Observation and analysis of the spatial frequency response of an atomic magnetometer

An atomic magnetometer is an ultra-high-sensitivity sensor that measures magnetic fields by means of atomic spin polarization. The spatial frequency response (SFR), which describes the spin polarizations corresponding to the field at different spatial frequencies, is an important property of atomic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2019-01, Vol.125 (2)
Hauptverfasser: Dong, Hai-Feng, Yin, Ling-Xiao, Li, Ai-Xian, Zhao, Nan, Chen, Jing-Ling, Sun, Ming-Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Journal of applied physics
container_volume 125
creator Dong, Hai-Feng
Yin, Ling-Xiao
Li, Ai-Xian
Zhao, Nan
Chen, Jing-Ling
Sun, Ming-Jie
description An atomic magnetometer is an ultra-high-sensitivity sensor that measures magnetic fields by means of atomic spin polarization. The spatial frequency response (SFR), which describes the spin polarizations corresponding to the field at different spatial frequencies, is an important property of atomic magnetometers. To characterize the SFR, one must generate a spatially varying field with scannable spatial frequencies (in units of mm − 1), a concept that is similar to that in the time domain. However, it is much more difficult to generate a varying magnetic field spatially using traditional magnetic coils than it is to do so temporally. We generate an equivalent field B y sin ⁡ ( ξ x ) with spatial frequency ξ from 0.14 mm − 1 to 36.5 mm − 1 by modulating the pump laser beam with a digital micromirror device and then obtain the SFR of a Cs atomic magnetometer by measuring the spin polarization of Cs at different spatial frequencies. The experimentally obtained SFR agrees well with the response calculated based on the Bloch equations and Fick’s second diffusion law. We also discuss a new definition of spatial resolution that can be used to characterize and compare the background spatial resolutions of different atomic magnetometers.
doi_str_mv 10.1063/1.5049609
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2166237982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2166237982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-8453ab394d75d8eefe1893027d6c6f2e10856b274c3d19126cdb050e1c0c644d3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsHv8GCJ4Wtk2ST3Ryl-A8KvdRzyCazuqXdrMm20G9vaoseBA_DDMxvHm8eIdcUJhQkv6cTAYWSoE7IiEKl8lIIOCUjAEbzSpXqnFzEuASgtOJqRBbzOmLYmqH1XWY6l8qsdrGNmW-y4QOz2KedWWVNwM8NdnaXBYy97yLuCZOOBr9ubbY27x2mEQcMl-SsMauIV8c-Jm9Pj4vpSz6bP79OH2a55awc8qoQ3NRcFa4UrkJskFaKAyudtLJhmPwLWbOysNxRRZm0rgYBSC1YWRSOj8nNQbcPPpmLg176TUgPRM2olIyXqmKJuj1QNvgYAza6D-3ahJ2moPehaaqPoSX27sBG2w7fofzAWx9-Qd275j_4r_IXMVd6pA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2166237982</pqid></control><display><type>article</type><title>Observation and analysis of the spatial frequency response of an atomic magnetometer</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Dong, Hai-Feng ; Yin, Ling-Xiao ; Li, Ai-Xian ; Zhao, Nan ; Chen, Jing-Ling ; Sun, Ming-Jie</creator><creatorcontrib>Dong, Hai-Feng ; Yin, Ling-Xiao ; Li, Ai-Xian ; Zhao, Nan ; Chen, Jing-Ling ; Sun, Ming-Jie</creatorcontrib><description>An atomic magnetometer is an ultra-high-sensitivity sensor that measures magnetic fields by means of atomic spin polarization. The spatial frequency response (SFR), which describes the spin polarizations corresponding to the field at different spatial frequencies, is an important property of atomic magnetometers. To characterize the SFR, one must generate a spatially varying field with scannable spatial frequencies (in units of mm − 1), a concept that is similar to that in the time domain. However, it is much more difficult to generate a varying magnetic field spatially using traditional magnetic coils than it is to do so temporally. We generate an equivalent field B y sin ⁡ ( ξ x ) with spatial frequency ξ from 0.14 mm − 1 to 36.5 mm − 1 by modulating the pump laser beam with a digital micromirror device and then obtain the SFR of a Cs atomic magnetometer by measuring the spin polarization of Cs at different spatial frequencies. The experimentally obtained SFR agrees well with the response calculated based on the Bloch equations and Fick’s second diffusion law. We also discuss a new definition of spatial resolution that can be used to characterize and compare the background spatial resolutions of different atomic magnetometers.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5049609</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Frequency response ; Laser beams ; Magnetic coils ; Magnetic fields ; Magnetic properties ; Magnetometers ; Microscopes ; Polarization (spin alignment) ; Spatial resolution</subject><ispartof>Journal of applied physics, 2019-01, Vol.125 (2)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-8453ab394d75d8eefe1893027d6c6f2e10856b274c3d19126cdb050e1c0c644d3</citedby><cites>FETCH-LOGICAL-c327t-8453ab394d75d8eefe1893027d6c6f2e10856b274c3d19126cdb050e1c0c644d3</cites><orcidid>0000-0003-2832-0973 ; 0000-0003-3029-9915</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.5049609$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Dong, Hai-Feng</creatorcontrib><creatorcontrib>Yin, Ling-Xiao</creatorcontrib><creatorcontrib>Li, Ai-Xian</creatorcontrib><creatorcontrib>Zhao, Nan</creatorcontrib><creatorcontrib>Chen, Jing-Ling</creatorcontrib><creatorcontrib>Sun, Ming-Jie</creatorcontrib><title>Observation and analysis of the spatial frequency response of an atomic magnetometer</title><title>Journal of applied physics</title><description>An atomic magnetometer is an ultra-high-sensitivity sensor that measures magnetic fields by means of atomic spin polarization. The spatial frequency response (SFR), which describes the spin polarizations corresponding to the field at different spatial frequencies, is an important property of atomic magnetometers. To characterize the SFR, one must generate a spatially varying field with scannable spatial frequencies (in units of mm − 1), a concept that is similar to that in the time domain. However, it is much more difficult to generate a varying magnetic field spatially using traditional magnetic coils than it is to do so temporally. We generate an equivalent field B y sin ⁡ ( ξ x ) with spatial frequency ξ from 0.14 mm − 1 to 36.5 mm − 1 by modulating the pump laser beam with a digital micromirror device and then obtain the SFR of a Cs atomic magnetometer by measuring the spin polarization of Cs at different spatial frequencies. The experimentally obtained SFR agrees well with the response calculated based on the Bloch equations and Fick’s second diffusion law. We also discuss a new definition of spatial resolution that can be used to characterize and compare the background spatial resolutions of different atomic magnetometers.</description><subject>Applied physics</subject><subject>Frequency response</subject><subject>Laser beams</subject><subject>Magnetic coils</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>Magnetometers</subject><subject>Microscopes</subject><subject>Polarization (spin alignment)</subject><subject>Spatial resolution</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsHv8GCJ4Wtk2ST3Ryl-A8KvdRzyCazuqXdrMm20G9vaoseBA_DDMxvHm8eIdcUJhQkv6cTAYWSoE7IiEKl8lIIOCUjAEbzSpXqnFzEuASgtOJqRBbzOmLYmqH1XWY6l8qsdrGNmW-y4QOz2KedWWVNwM8NdnaXBYy97yLuCZOOBr9ubbY27x2mEQcMl-SsMauIV8c-Jm9Pj4vpSz6bP79OH2a55awc8qoQ3NRcFa4UrkJskFaKAyudtLJhmPwLWbOysNxRRZm0rgYBSC1YWRSOj8nNQbcPPpmLg176TUgPRM2olIyXqmKJuj1QNvgYAza6D-3ahJ2moPehaaqPoSX27sBG2w7fofzAWx9-Qd275j_4r_IXMVd6pA</recordid><startdate>20190114</startdate><enddate>20190114</enddate><creator>Dong, Hai-Feng</creator><creator>Yin, Ling-Xiao</creator><creator>Li, Ai-Xian</creator><creator>Zhao, Nan</creator><creator>Chen, Jing-Ling</creator><creator>Sun, Ming-Jie</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2832-0973</orcidid><orcidid>https://orcid.org/0000-0003-3029-9915</orcidid></search><sort><creationdate>20190114</creationdate><title>Observation and analysis of the spatial frequency response of an atomic magnetometer</title><author>Dong, Hai-Feng ; Yin, Ling-Xiao ; Li, Ai-Xian ; Zhao, Nan ; Chen, Jing-Ling ; Sun, Ming-Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-8453ab394d75d8eefe1893027d6c6f2e10856b274c3d19126cdb050e1c0c644d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applied physics</topic><topic>Frequency response</topic><topic>Laser beams</topic><topic>Magnetic coils</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>Magnetometers</topic><topic>Microscopes</topic><topic>Polarization (spin alignment)</topic><topic>Spatial resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Hai-Feng</creatorcontrib><creatorcontrib>Yin, Ling-Xiao</creatorcontrib><creatorcontrib>Li, Ai-Xian</creatorcontrib><creatorcontrib>Zhao, Nan</creatorcontrib><creatorcontrib>Chen, Jing-Ling</creatorcontrib><creatorcontrib>Sun, Ming-Jie</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Hai-Feng</au><au>Yin, Ling-Xiao</au><au>Li, Ai-Xian</au><au>Zhao, Nan</au><au>Chen, Jing-Ling</au><au>Sun, Ming-Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation and analysis of the spatial frequency response of an atomic magnetometer</atitle><jtitle>Journal of applied physics</jtitle><date>2019-01-14</date><risdate>2019</risdate><volume>125</volume><issue>2</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>An atomic magnetometer is an ultra-high-sensitivity sensor that measures magnetic fields by means of atomic spin polarization. The spatial frequency response (SFR), which describes the spin polarizations corresponding to the field at different spatial frequencies, is an important property of atomic magnetometers. To characterize the SFR, one must generate a spatially varying field with scannable spatial frequencies (in units of mm − 1), a concept that is similar to that in the time domain. However, it is much more difficult to generate a varying magnetic field spatially using traditional magnetic coils than it is to do so temporally. We generate an equivalent field B y sin ⁡ ( ξ x ) with spatial frequency ξ from 0.14 mm − 1 to 36.5 mm − 1 by modulating the pump laser beam with a digital micromirror device and then obtain the SFR of a Cs atomic magnetometer by measuring the spin polarization of Cs at different spatial frequencies. The experimentally obtained SFR agrees well with the response calculated based on the Bloch equations and Fick’s second diffusion law. We also discuss a new definition of spatial resolution that can be used to characterize and compare the background spatial resolutions of different atomic magnetometers.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5049609</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2832-0973</orcidid><orcidid>https://orcid.org/0000-0003-3029-9915</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2019-01, Vol.125 (2)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2166237982
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Frequency response
Laser beams
Magnetic coils
Magnetic fields
Magnetic properties
Magnetometers
Microscopes
Polarization (spin alignment)
Spatial resolution
title Observation and analysis of the spatial frequency response of an atomic magnetometer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A20%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20and%20analysis%20of%20the%20spatial%20frequency%20response%20of%20an%20atomic%20magnetometer&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Dong,%20Hai-Feng&rft.date=2019-01-14&rft.volume=125&rft.issue=2&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5049609&rft_dat=%3Cproquest_scita%3E2166237982%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2166237982&rft_id=info:pmid/&rfr_iscdi=true