Observation and analysis of the spatial frequency response of an atomic magnetometer
An atomic magnetometer is an ultra-high-sensitivity sensor that measures magnetic fields by means of atomic spin polarization. The spatial frequency response (SFR), which describes the spin polarizations corresponding to the field at different spatial frequencies, is an important property of atomic...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2019-01, Vol.125 (2) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 125 |
creator | Dong, Hai-Feng Yin, Ling-Xiao Li, Ai-Xian Zhao, Nan Chen, Jing-Ling Sun, Ming-Jie |
description | An atomic magnetometer is an ultra-high-sensitivity sensor that measures magnetic fields by means of atomic spin polarization. The spatial frequency response (SFR), which describes the spin polarizations corresponding to the field at different spatial frequencies, is an important property of atomic magnetometers. To characterize the SFR, one must generate a spatially varying field with scannable spatial frequencies (in units of mm
−
1), a concept that is similar to that in the time domain. However, it is much more difficult to generate a varying magnetic field spatially using traditional magnetic coils than it is to do so temporally. We generate an equivalent field
B
y
sin
(
ξ
x
) with spatial frequency
ξ from 0.14 mm
−
1 to 36.5 mm
−
1 by modulating the pump laser beam with a digital micromirror device and then obtain the SFR of a Cs atomic magnetometer by measuring the spin polarization of Cs at different spatial frequencies. The experimentally obtained SFR agrees well with the response calculated based on the Bloch equations and Fick’s second diffusion law. We also discuss a new definition of spatial resolution that can be used to characterize and compare the background spatial resolutions of different atomic magnetometers. |
doi_str_mv | 10.1063/1.5049609 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2166237982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2166237982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-8453ab394d75d8eefe1893027d6c6f2e10856b274c3d19126cdb050e1c0c644d3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsHv8GCJ4Wtk2ST3Ryl-A8KvdRzyCazuqXdrMm20G9vaoseBA_DDMxvHm8eIdcUJhQkv6cTAYWSoE7IiEKl8lIIOCUjAEbzSpXqnFzEuASgtOJqRBbzOmLYmqH1XWY6l8qsdrGNmW-y4QOz2KedWWVNwM8NdnaXBYy97yLuCZOOBr9ubbY27x2mEQcMl-SsMauIV8c-Jm9Pj4vpSz6bP79OH2a55awc8qoQ3NRcFa4UrkJskFaKAyudtLJhmPwLWbOysNxRRZm0rgYBSC1YWRSOj8nNQbcPPpmLg176TUgPRM2olIyXqmKJuj1QNvgYAza6D-3ahJ2moPehaaqPoSX27sBG2w7fofzAWx9-Qd275j_4r_IXMVd6pA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2166237982</pqid></control><display><type>article</type><title>Observation and analysis of the spatial frequency response of an atomic magnetometer</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Dong, Hai-Feng ; Yin, Ling-Xiao ; Li, Ai-Xian ; Zhao, Nan ; Chen, Jing-Ling ; Sun, Ming-Jie</creator><creatorcontrib>Dong, Hai-Feng ; Yin, Ling-Xiao ; Li, Ai-Xian ; Zhao, Nan ; Chen, Jing-Ling ; Sun, Ming-Jie</creatorcontrib><description>An atomic magnetometer is an ultra-high-sensitivity sensor that measures magnetic fields by means of atomic spin polarization. The spatial frequency response (SFR), which describes the spin polarizations corresponding to the field at different spatial frequencies, is an important property of atomic magnetometers. To characterize the SFR, one must generate a spatially varying field with scannable spatial frequencies (in units of mm
−
1), a concept that is similar to that in the time domain. However, it is much more difficult to generate a varying magnetic field spatially using traditional magnetic coils than it is to do so temporally. We generate an equivalent field
B
y
sin
(
ξ
x
) with spatial frequency
ξ from 0.14 mm
−
1 to 36.5 mm
−
1 by modulating the pump laser beam with a digital micromirror device and then obtain the SFR of a Cs atomic magnetometer by measuring the spin polarization of Cs at different spatial frequencies. The experimentally obtained SFR agrees well with the response calculated based on the Bloch equations and Fick’s second diffusion law. We also discuss a new definition of spatial resolution that can be used to characterize and compare the background spatial resolutions of different atomic magnetometers.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5049609</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Frequency response ; Laser beams ; Magnetic coils ; Magnetic fields ; Magnetic properties ; Magnetometers ; Microscopes ; Polarization (spin alignment) ; Spatial resolution</subject><ispartof>Journal of applied physics, 2019-01, Vol.125 (2)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-8453ab394d75d8eefe1893027d6c6f2e10856b274c3d19126cdb050e1c0c644d3</citedby><cites>FETCH-LOGICAL-c327t-8453ab394d75d8eefe1893027d6c6f2e10856b274c3d19126cdb050e1c0c644d3</cites><orcidid>0000-0003-2832-0973 ; 0000-0003-3029-9915</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.5049609$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Dong, Hai-Feng</creatorcontrib><creatorcontrib>Yin, Ling-Xiao</creatorcontrib><creatorcontrib>Li, Ai-Xian</creatorcontrib><creatorcontrib>Zhao, Nan</creatorcontrib><creatorcontrib>Chen, Jing-Ling</creatorcontrib><creatorcontrib>Sun, Ming-Jie</creatorcontrib><title>Observation and analysis of the spatial frequency response of an atomic magnetometer</title><title>Journal of applied physics</title><description>An atomic magnetometer is an ultra-high-sensitivity sensor that measures magnetic fields by means of atomic spin polarization. The spatial frequency response (SFR), which describes the spin polarizations corresponding to the field at different spatial frequencies, is an important property of atomic magnetometers. To characterize the SFR, one must generate a spatially varying field with scannable spatial frequencies (in units of mm
−
1), a concept that is similar to that in the time domain. However, it is much more difficult to generate a varying magnetic field spatially using traditional magnetic coils than it is to do so temporally. We generate an equivalent field
B
y
sin
(
ξ
x
) with spatial frequency
ξ from 0.14 mm
−
1 to 36.5 mm
−
1 by modulating the pump laser beam with a digital micromirror device and then obtain the SFR of a Cs atomic magnetometer by measuring the spin polarization of Cs at different spatial frequencies. The experimentally obtained SFR agrees well with the response calculated based on the Bloch equations and Fick’s second diffusion law. We also discuss a new definition of spatial resolution that can be used to characterize and compare the background spatial resolutions of different atomic magnetometers.</description><subject>Applied physics</subject><subject>Frequency response</subject><subject>Laser beams</subject><subject>Magnetic coils</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>Magnetometers</subject><subject>Microscopes</subject><subject>Polarization (spin alignment)</subject><subject>Spatial resolution</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsHv8GCJ4Wtk2ST3Ryl-A8KvdRzyCazuqXdrMm20G9vaoseBA_DDMxvHm8eIdcUJhQkv6cTAYWSoE7IiEKl8lIIOCUjAEbzSpXqnFzEuASgtOJqRBbzOmLYmqH1XWY6l8qsdrGNmW-y4QOz2KedWWVNwM8NdnaXBYy97yLuCZOOBr9ubbY27x2mEQcMl-SsMauIV8c-Jm9Pj4vpSz6bP79OH2a55awc8qoQ3NRcFa4UrkJskFaKAyudtLJhmPwLWbOysNxRRZm0rgYBSC1YWRSOj8nNQbcPPpmLg176TUgPRM2olIyXqmKJuj1QNvgYAza6D-3ahJ2moPehaaqPoSX27sBG2w7fofzAWx9-Qd275j_4r_IXMVd6pA</recordid><startdate>20190114</startdate><enddate>20190114</enddate><creator>Dong, Hai-Feng</creator><creator>Yin, Ling-Xiao</creator><creator>Li, Ai-Xian</creator><creator>Zhao, Nan</creator><creator>Chen, Jing-Ling</creator><creator>Sun, Ming-Jie</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2832-0973</orcidid><orcidid>https://orcid.org/0000-0003-3029-9915</orcidid></search><sort><creationdate>20190114</creationdate><title>Observation and analysis of the spatial frequency response of an atomic magnetometer</title><author>Dong, Hai-Feng ; Yin, Ling-Xiao ; Li, Ai-Xian ; Zhao, Nan ; Chen, Jing-Ling ; Sun, Ming-Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-8453ab394d75d8eefe1893027d6c6f2e10856b274c3d19126cdb050e1c0c644d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applied physics</topic><topic>Frequency response</topic><topic>Laser beams</topic><topic>Magnetic coils</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>Magnetometers</topic><topic>Microscopes</topic><topic>Polarization (spin alignment)</topic><topic>Spatial resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Hai-Feng</creatorcontrib><creatorcontrib>Yin, Ling-Xiao</creatorcontrib><creatorcontrib>Li, Ai-Xian</creatorcontrib><creatorcontrib>Zhao, Nan</creatorcontrib><creatorcontrib>Chen, Jing-Ling</creatorcontrib><creatorcontrib>Sun, Ming-Jie</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Hai-Feng</au><au>Yin, Ling-Xiao</au><au>Li, Ai-Xian</au><au>Zhao, Nan</au><au>Chen, Jing-Ling</au><au>Sun, Ming-Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation and analysis of the spatial frequency response of an atomic magnetometer</atitle><jtitle>Journal of applied physics</jtitle><date>2019-01-14</date><risdate>2019</risdate><volume>125</volume><issue>2</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>An atomic magnetometer is an ultra-high-sensitivity sensor that measures magnetic fields by means of atomic spin polarization. The spatial frequency response (SFR), which describes the spin polarizations corresponding to the field at different spatial frequencies, is an important property of atomic magnetometers. To characterize the SFR, one must generate a spatially varying field with scannable spatial frequencies (in units of mm
−
1), a concept that is similar to that in the time domain. However, it is much more difficult to generate a varying magnetic field spatially using traditional magnetic coils than it is to do so temporally. We generate an equivalent field
B
y
sin
(
ξ
x
) with spatial frequency
ξ from 0.14 mm
−
1 to 36.5 mm
−
1 by modulating the pump laser beam with a digital micromirror device and then obtain the SFR of a Cs atomic magnetometer by measuring the spin polarization of Cs at different spatial frequencies. The experimentally obtained SFR agrees well with the response calculated based on the Bloch equations and Fick’s second diffusion law. We also discuss a new definition of spatial resolution that can be used to characterize and compare the background spatial resolutions of different atomic magnetometers.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5049609</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2832-0973</orcidid><orcidid>https://orcid.org/0000-0003-3029-9915</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2019-01, Vol.125 (2) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_proquest_journals_2166237982 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Frequency response Laser beams Magnetic coils Magnetic fields Magnetic properties Magnetometers Microscopes Polarization (spin alignment) Spatial resolution |
title | Observation and analysis of the spatial frequency response of an atomic magnetometer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A20%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20and%20analysis%20of%20the%20spatial%20frequency%20response%20of%20an%20atomic%20magnetometer&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Dong,%20Hai-Feng&rft.date=2019-01-14&rft.volume=125&rft.issue=2&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5049609&rft_dat=%3Cproquest_scita%3E2166237982%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2166237982&rft_id=info:pmid/&rfr_iscdi=true |