A comparative study on in vitro degradation behavior of PLLA-based copolymer monofilaments

Three kinds of high molecular weight polymers were synthesized by ring-opening polymerization with various monomer feeding ratios (named as PLLA, PLCL 95/5 and PLGC 80/15/5, respectively). Then oriented monofilament was produced through melt-extrusion and tensile orientation based on each kind of po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer degradation and stability 2018-12, Vol.158, p.148-156
Hauptverfasser: Shi, Daokun, Kang, Yahong, Zhang, Guoyi, Gao, Chenguang, Lu, Wei, Yang, Caihong, Zou, Hua, Jiang, Hongyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Three kinds of high molecular weight polymers were synthesized by ring-opening polymerization with various monomer feeding ratios (named as PLLA, PLCL 95/5 and PLGC 80/15/5, respectively). Then oriented monofilament was produced through melt-extrusion and tensile orientation based on each kind of polymer. In vitro degradation properties of the monofilaments were studied over a range of degradation time from 1 to 21 days at 60 °C by using SEM, GPC, DSC, XRD and tensile test. Degradation results showed that the mass loss, Tg and morphology integrity of the PLLA monofilament basically remained unchanged, and partial degradation in amorphous region emerged with slight increase of crystallinity. For the PLCL 95/5 monofilament, the crystallinity was increased and the monofilament was fractured at 14 days accompanying with obvious decrease of the mass and Tm, indicating that most part of the amorphous region was degraded. Apparently, the PLGC 80/15/5 monofilament showed the fastest degradation rate with considerable mass loss and decrease of Tg. The amorphous region was degraded sharply in the early stage due to its good water absorbability and lower structural regularity, and the initially-formed crystalline region was degraded slowly later evidenced from the change of crystallinity and it was fractured at 3 days. The accelerated effects calculated according to the first-order kinetic model demonstrated that the PLCL 95/5 monofilament was degraded 2.5 times faster than pure PLLA and the PLGC 80/15/5 monofilament was degraded 7.5 times faster than PLLA. These were nearly consistent with those based on [η] (2.5 and 6.9 times respectively). The comparative study of in vitro degradation behavior of PLLA-based copolymer monofilaments would provide useful information for controlling the monomer composition of PLLA-based materials with specific degradation requirements. •Three kinds of high molecular weight polymers were synthesized with various monomer feeding ratios.•A comparative study of in vitro degradation behavior of the PLLA-based copolymer monofilaments was conducted.•The PLGC 80/15/5 monofilament showed the most rapid degradation behavior owning to its higher hydrophilicity.•The accelerated effects were applied to analyze the relationship between the monomer ratio and the degradation rate.
ISSN:0141-3910
1873-2321
DOI:10.1016/j.polymdegradstab.2018.11.005