The anti-adjacency matrix of a graph: Eccentricity matrix

In this paper we introduce a new graph matrix, named the anti-adjacency matrix or eccentricity matrix, which is constructed from the distance matrix of a graph by keeping for each row and each column only the largest distances. This matrix can be interpreted as the opposite of the adjacency matrix,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2018-12, Vol.251, p.299-309
Hauptverfasser: Wang, Jianfeng, Lu, Mei, Belardo, Francesco, Randić, Milan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 309
container_issue
container_start_page 299
container_title Discrete Applied Mathematics
container_volume 251
creator Wang, Jianfeng
Lu, Mei
Belardo, Francesco
Randić, Milan
description In this paper we introduce a new graph matrix, named the anti-adjacency matrix or eccentricity matrix, which is constructed from the distance matrix of a graph by keeping for each row and each column only the largest distances. This matrix can be interpreted as the opposite of the adjacency matrix, which is instead constructed from the distance matrix of a graph by keeping for each row and each column only the distances equal to 1. We show that the eccentricity matrix of trees is irreducible, and we investigate the relations between the eigenvalues of the adjacency and eccentricity matrices. Finally, we give some applications of this new matrix in terms of molecular descriptors, and we conclude by proposing some further research problems.
doi_str_mv 10.1016/j.dam.2018.05.062
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2166086732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X18303342</els_id><sourcerecordid>2166086732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-3d14e2c76af46eba12be21949fd45bce1e18ee61f4a8a7fa26a3467c4e1052473</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNuC510z2WyS6kmKX1DwUsFbmGYnNovt1mQr9t-bUr16GmbmfefjYewSeAUc1HVXtbiqBAdT8abiShyxERgtSqU1HLNR1qhSgHk7ZWcpdZxzyNmITeZLKnA9hBLbDh2t3a5Y4RDDd9H7Aov3iJvlTXHvcitXXRj--ufsxONHoovfOGavD_fz6VM5e3l8nt7NSlcrM5R1C5KE0wq9VLRAEAsSMJET38pm4QgIDJECL9Gg9igU1lJpJwl4I6Sux-zqMHcT-88tpcF2_Tau80or8lPcKF2LrIKDysU-pUjebmJYYdxZ4HZPyHY2E7J7QpY3NhPKntuDh_L5X4GiTS5kAtSGSG6wbR_-cf8ABB1tNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2166086732</pqid></control><display><type>article</type><title>The anti-adjacency matrix of a graph: Eccentricity matrix</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Wang, Jianfeng ; Lu, Mei ; Belardo, Francesco ; Randić, Milan</creator><creatorcontrib>Wang, Jianfeng ; Lu, Mei ; Belardo, Francesco ; Randić, Milan</creatorcontrib><description>In this paper we introduce a new graph matrix, named the anti-adjacency matrix or eccentricity matrix, which is constructed from the distance matrix of a graph by keeping for each row and each column only the largest distances. This matrix can be interpreted as the opposite of the adjacency matrix, which is instead constructed from the distance matrix of a graph by keeping for each row and each column only the distances equal to 1. We show that the eccentricity matrix of trees is irreducible, and we investigate the relations between the eigenvalues of the adjacency and eccentricity matrices. Finally, we give some applications of this new matrix in terms of molecular descriptors, and we conclude by proposing some further research problems.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2018.05.062</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adjacency matrix ; Distance ; Distance matrix ; Eccentricity ; Eccentricity matrix ; Eigenvalues ; Graphs ; Mathematics ; Matrix</subject><ispartof>Discrete Applied Mathematics, 2018-12, Vol.251, p.299-309</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Dec 31, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-3d14e2c76af46eba12be21949fd45bce1e18ee61f4a8a7fa26a3467c4e1052473</citedby><cites>FETCH-LOGICAL-c368t-3d14e2c76af46eba12be21949fd45bce1e18ee61f4a8a7fa26a3467c4e1052473</cites><orcidid>0000-0003-4253-2905</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dam.2018.05.062$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids></links><search><creatorcontrib>Wang, Jianfeng</creatorcontrib><creatorcontrib>Lu, Mei</creatorcontrib><creatorcontrib>Belardo, Francesco</creatorcontrib><creatorcontrib>Randić, Milan</creatorcontrib><title>The anti-adjacency matrix of a graph: Eccentricity matrix</title><title>Discrete Applied Mathematics</title><description>In this paper we introduce a new graph matrix, named the anti-adjacency matrix or eccentricity matrix, which is constructed from the distance matrix of a graph by keeping for each row and each column only the largest distances. This matrix can be interpreted as the opposite of the adjacency matrix, which is instead constructed from the distance matrix of a graph by keeping for each row and each column only the distances equal to 1. We show that the eccentricity matrix of trees is irreducible, and we investigate the relations between the eigenvalues of the adjacency and eccentricity matrices. Finally, we give some applications of this new matrix in terms of molecular descriptors, and we conclude by proposing some further research problems.</description><subject>Adjacency matrix</subject><subject>Distance</subject><subject>Distance matrix</subject><subject>Eccentricity</subject><subject>Eccentricity matrix</subject><subject>Eigenvalues</subject><subject>Graphs</subject><subject>Mathematics</subject><subject>Matrix</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNuC510z2WyS6kmKX1DwUsFbmGYnNovt1mQr9t-bUr16GmbmfefjYewSeAUc1HVXtbiqBAdT8abiShyxERgtSqU1HLNR1qhSgHk7ZWcpdZxzyNmITeZLKnA9hBLbDh2t3a5Y4RDDd9H7Aov3iJvlTXHvcitXXRj--ufsxONHoovfOGavD_fz6VM5e3l8nt7NSlcrM5R1C5KE0wq9VLRAEAsSMJET38pm4QgIDJECL9Gg9igU1lJpJwl4I6Sux-zqMHcT-88tpcF2_Tau80or8lPcKF2LrIKDysU-pUjebmJYYdxZ4HZPyHY2E7J7QpY3NhPKntuDh_L5X4GiTS5kAtSGSG6wbR_-cf8ABB1tNw</recordid><startdate>20181231</startdate><enddate>20181231</enddate><creator>Wang, Jianfeng</creator><creator>Lu, Mei</creator><creator>Belardo, Francesco</creator><creator>Randić, Milan</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4253-2905</orcidid></search><sort><creationdate>20181231</creationdate><title>The anti-adjacency matrix of a graph: Eccentricity matrix</title><author>Wang, Jianfeng ; Lu, Mei ; Belardo, Francesco ; Randić, Milan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-3d14e2c76af46eba12be21949fd45bce1e18ee61f4a8a7fa26a3467c4e1052473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adjacency matrix</topic><topic>Distance</topic><topic>Distance matrix</topic><topic>Eccentricity</topic><topic>Eccentricity matrix</topic><topic>Eigenvalues</topic><topic>Graphs</topic><topic>Mathematics</topic><topic>Matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jianfeng</creatorcontrib><creatorcontrib>Lu, Mei</creatorcontrib><creatorcontrib>Belardo, Francesco</creatorcontrib><creatorcontrib>Randić, Milan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jianfeng</au><au>Lu, Mei</au><au>Belardo, Francesco</au><au>Randić, Milan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The anti-adjacency matrix of a graph: Eccentricity matrix</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2018-12-31</date><risdate>2018</risdate><volume>251</volume><spage>299</spage><epage>309</epage><pages>299-309</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>In this paper we introduce a new graph matrix, named the anti-adjacency matrix or eccentricity matrix, which is constructed from the distance matrix of a graph by keeping for each row and each column only the largest distances. This matrix can be interpreted as the opposite of the adjacency matrix, which is instead constructed from the distance matrix of a graph by keeping for each row and each column only the distances equal to 1. We show that the eccentricity matrix of trees is irreducible, and we investigate the relations between the eigenvalues of the adjacency and eccentricity matrices. Finally, we give some applications of this new matrix in terms of molecular descriptors, and we conclude by proposing some further research problems.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2018.05.062</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4253-2905</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2018-12, Vol.251, p.299-309
issn 0166-218X
1872-6771
language eng
recordid cdi_proquest_journals_2166086732
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present)
subjects Adjacency matrix
Distance
Distance matrix
Eccentricity
Eccentricity matrix
Eigenvalues
Graphs
Mathematics
Matrix
title The anti-adjacency matrix of a graph: Eccentricity matrix
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A19%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20anti-adjacency%20matrix%20of%20a%20graph:%20Eccentricity%20matrix&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Wang,%20Jianfeng&rft.date=2018-12-31&rft.volume=251&rft.spage=299&rft.epage=309&rft.pages=299-309&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2018.05.062&rft_dat=%3Cproquest_cross%3E2166086732%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2166086732&rft_id=info:pmid/&rft_els_id=S0166218X18303342&rfr_iscdi=true