The anti-adjacency matrix of a graph: Eccentricity matrix
In this paper we introduce a new graph matrix, named the anti-adjacency matrix or eccentricity matrix, which is constructed from the distance matrix of a graph by keeping for each row and each column only the largest distances. This matrix can be interpreted as the opposite of the adjacency matrix,...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2018-12, Vol.251, p.299-309 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 309 |
---|---|
container_issue | |
container_start_page | 299 |
container_title | Discrete Applied Mathematics |
container_volume | 251 |
creator | Wang, Jianfeng Lu, Mei Belardo, Francesco Randić, Milan |
description | In this paper we introduce a new graph matrix, named the anti-adjacency matrix or eccentricity matrix, which is constructed from the distance matrix of a graph by keeping for each row and each column only the largest distances. This matrix can be interpreted as the opposite of the adjacency matrix, which is instead constructed from the distance matrix of a graph by keeping for each row and each column only the distances equal to 1. We show that the eccentricity matrix of trees is irreducible, and we investigate the relations between the eigenvalues of the adjacency and eccentricity matrices. Finally, we give some applications of this new matrix in terms of molecular descriptors, and we conclude by proposing some further research problems. |
doi_str_mv | 10.1016/j.dam.2018.05.062 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2166086732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X18303342</els_id><sourcerecordid>2166086732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-3d14e2c76af46eba12be21949fd45bce1e18ee61f4a8a7fa26a3467c4e1052473</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNuC510z2WyS6kmKX1DwUsFbmGYnNovt1mQr9t-bUr16GmbmfefjYewSeAUc1HVXtbiqBAdT8abiShyxERgtSqU1HLNR1qhSgHk7ZWcpdZxzyNmITeZLKnA9hBLbDh2t3a5Y4RDDd9H7Aov3iJvlTXHvcitXXRj--ufsxONHoovfOGavD_fz6VM5e3l8nt7NSlcrM5R1C5KE0wq9VLRAEAsSMJET38pm4QgIDJECL9Gg9igU1lJpJwl4I6Sux-zqMHcT-88tpcF2_Tau80or8lPcKF2LrIKDysU-pUjebmJYYdxZ4HZPyHY2E7J7QpY3NhPKntuDh_L5X4GiTS5kAtSGSG6wbR_-cf8ABB1tNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2166086732</pqid></control><display><type>article</type><title>The anti-adjacency matrix of a graph: Eccentricity matrix</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Wang, Jianfeng ; Lu, Mei ; Belardo, Francesco ; Randić, Milan</creator><creatorcontrib>Wang, Jianfeng ; Lu, Mei ; Belardo, Francesco ; Randić, Milan</creatorcontrib><description>In this paper we introduce a new graph matrix, named the anti-adjacency matrix or eccentricity matrix, which is constructed from the distance matrix of a graph by keeping for each row and each column only the largest distances. This matrix can be interpreted as the opposite of the adjacency matrix, which is instead constructed from the distance matrix of a graph by keeping for each row and each column only the distances equal to 1. We show that the eccentricity matrix of trees is irreducible, and we investigate the relations between the eigenvalues of the adjacency and eccentricity matrices. Finally, we give some applications of this new matrix in terms of molecular descriptors, and we conclude by proposing some further research problems.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2018.05.062</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adjacency matrix ; Distance ; Distance matrix ; Eccentricity ; Eccentricity matrix ; Eigenvalues ; Graphs ; Mathematics ; Matrix</subject><ispartof>Discrete Applied Mathematics, 2018-12, Vol.251, p.299-309</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Dec 31, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-3d14e2c76af46eba12be21949fd45bce1e18ee61f4a8a7fa26a3467c4e1052473</citedby><cites>FETCH-LOGICAL-c368t-3d14e2c76af46eba12be21949fd45bce1e18ee61f4a8a7fa26a3467c4e1052473</cites><orcidid>0000-0003-4253-2905</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dam.2018.05.062$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids></links><search><creatorcontrib>Wang, Jianfeng</creatorcontrib><creatorcontrib>Lu, Mei</creatorcontrib><creatorcontrib>Belardo, Francesco</creatorcontrib><creatorcontrib>Randić, Milan</creatorcontrib><title>The anti-adjacency matrix of a graph: Eccentricity matrix</title><title>Discrete Applied Mathematics</title><description>In this paper we introduce a new graph matrix, named the anti-adjacency matrix or eccentricity matrix, which is constructed from the distance matrix of a graph by keeping for each row and each column only the largest distances. This matrix can be interpreted as the opposite of the adjacency matrix, which is instead constructed from the distance matrix of a graph by keeping for each row and each column only the distances equal to 1. We show that the eccentricity matrix of trees is irreducible, and we investigate the relations between the eigenvalues of the adjacency and eccentricity matrices. Finally, we give some applications of this new matrix in terms of molecular descriptors, and we conclude by proposing some further research problems.</description><subject>Adjacency matrix</subject><subject>Distance</subject><subject>Distance matrix</subject><subject>Eccentricity</subject><subject>Eccentricity matrix</subject><subject>Eigenvalues</subject><subject>Graphs</subject><subject>Mathematics</subject><subject>Matrix</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNuC510z2WyS6kmKX1DwUsFbmGYnNovt1mQr9t-bUr16GmbmfefjYewSeAUc1HVXtbiqBAdT8abiShyxERgtSqU1HLNR1qhSgHk7ZWcpdZxzyNmITeZLKnA9hBLbDh2t3a5Y4RDDd9H7Aov3iJvlTXHvcitXXRj--ufsxONHoovfOGavD_fz6VM5e3l8nt7NSlcrM5R1C5KE0wq9VLRAEAsSMJET38pm4QgIDJECL9Gg9igU1lJpJwl4I6Sux-zqMHcT-88tpcF2_Tau80or8lPcKF2LrIKDysU-pUjebmJYYdxZ4HZPyHY2E7J7QpY3NhPKntuDh_L5X4GiTS5kAtSGSG6wbR_-cf8ABB1tNw</recordid><startdate>20181231</startdate><enddate>20181231</enddate><creator>Wang, Jianfeng</creator><creator>Lu, Mei</creator><creator>Belardo, Francesco</creator><creator>Randić, Milan</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4253-2905</orcidid></search><sort><creationdate>20181231</creationdate><title>The anti-adjacency matrix of a graph: Eccentricity matrix</title><author>Wang, Jianfeng ; Lu, Mei ; Belardo, Francesco ; Randić, Milan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-3d14e2c76af46eba12be21949fd45bce1e18ee61f4a8a7fa26a3467c4e1052473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adjacency matrix</topic><topic>Distance</topic><topic>Distance matrix</topic><topic>Eccentricity</topic><topic>Eccentricity matrix</topic><topic>Eigenvalues</topic><topic>Graphs</topic><topic>Mathematics</topic><topic>Matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jianfeng</creatorcontrib><creatorcontrib>Lu, Mei</creatorcontrib><creatorcontrib>Belardo, Francesco</creatorcontrib><creatorcontrib>Randić, Milan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jianfeng</au><au>Lu, Mei</au><au>Belardo, Francesco</au><au>Randić, Milan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The anti-adjacency matrix of a graph: Eccentricity matrix</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2018-12-31</date><risdate>2018</risdate><volume>251</volume><spage>299</spage><epage>309</epage><pages>299-309</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>In this paper we introduce a new graph matrix, named the anti-adjacency matrix or eccentricity matrix, which is constructed from the distance matrix of a graph by keeping for each row and each column only the largest distances. This matrix can be interpreted as the opposite of the adjacency matrix, which is instead constructed from the distance matrix of a graph by keeping for each row and each column only the distances equal to 1. We show that the eccentricity matrix of trees is irreducible, and we investigate the relations between the eigenvalues of the adjacency and eccentricity matrices. Finally, we give some applications of this new matrix in terms of molecular descriptors, and we conclude by proposing some further research problems.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2018.05.062</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4253-2905</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-218X |
ispartof | Discrete Applied Mathematics, 2018-12, Vol.251, p.299-309 |
issn | 0166-218X 1872-6771 |
language | eng |
recordid | cdi_proquest_journals_2166086732 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present) |
subjects | Adjacency matrix Distance Distance matrix Eccentricity Eccentricity matrix Eigenvalues Graphs Mathematics Matrix |
title | The anti-adjacency matrix of a graph: Eccentricity matrix |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A19%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20anti-adjacency%20matrix%20of%20a%20graph:%20Eccentricity%20matrix&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Wang,%20Jianfeng&rft.date=2018-12-31&rft.volume=251&rft.spage=299&rft.epage=309&rft.pages=299-309&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2018.05.062&rft_dat=%3Cproquest_cross%3E2166086732%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2166086732&rft_id=info:pmid/&rft_els_id=S0166218X18303342&rfr_iscdi=true |