Deep Multi-User Reinforcement Learning for Distributed Dynamic Spectrum Access
We consider the problem of dynamic spectrum access for network utility maximization in multichannel wireless networks. The shared bandwidth is divided into K orthogonal channels. In the beginning of each time slot, each user selects a channel and transmits a packet with a certain transmission prob...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2019-01, Vol.18 (1), p.310-323 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 323 |
---|---|
container_issue | 1 |
container_start_page | 310 |
container_title | IEEE transactions on wireless communications |
container_volume | 18 |
creator | Naparstek, Oshri Cohen, Kobi |
description | We consider the problem of dynamic spectrum access for network utility maximization in multichannel wireless networks. The shared bandwidth is divided into K orthogonal channels. In the beginning of each time slot, each user selects a channel and transmits a packet with a certain transmission probability. After each time slot, each user that has transmitted a packet receives a local observation indicating whether its packet was successfully delivered or not (i.e., ACK signal). The objective is a multi-user strategy for accessing the spectrum that maximizes a certain network utility in a distributed manner without online coordination or message exchanges between users. Obtaining an optimal solution for the spectrum access problem is computationally expensive, in general, due to the large-state space and partial observability of the states. To tackle this problem, we develop a novel distributed dynamic spectrum access algorithm based on deep multi-user reinforcement leaning. Specifically, at each time slot, each user maps its current state to the spectrum access actions based on a trained deep-Q network used to maximize the objective function. Game theoretic analysis of the system dynamics is developed for establishing design principles for the implementation of the algorithm. The experimental results demonstrate the strong performance of the algorithm. |
doi_str_mv | 10.1109/TWC.2018.2879433 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2165864719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8532121</ieee_id><sourcerecordid>2165864719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-8708c89b4c969f54069091c4e8e8aab2d6b41b1586776c9dc6d9977440a29c253</originalsourceid><addsrcrecordid>eNo9kElLA0EQRhtRMEbvgpcGzxN7X44hcYOooAkem5meGumQWeyeOeTfOyHBU30U76uCh9AtJTNKiX1Yfy9mjFAzY0ZbwfkZmlApTcaYMOeHzFVGmVaX6CqlLSFUKykn6H0J0OG3YdeHbJMg4k8ITdVGDzU0PV5BHpvQ_OBxhZch9TEUQw8lXu6bvA4ef3Xg-zjUeO49pHSNLqp8l-DmNKdo8_S4Xrxkq4_n18V8lXnOeZ8ZTYw3thDeKltJQZQllnoBBkyeF6xUhaAFlUZprbwtvSqt1VoIkjPrmeRTdH-828X2d4DUu207xGZ86RhVY09oakeKHCkf25QiVK6Loc7j3lHiDtbcaM0drLmTtbFyd6wEAPjHjeSMMsr_AOFyZ14</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2165864719</pqid></control><display><type>article</type><title>Deep Multi-User Reinforcement Learning for Distributed Dynamic Spectrum Access</title><source>IEEE Electronic Library (IEL)</source><creator>Naparstek, Oshri ; Cohen, Kobi</creator><creatorcontrib>Naparstek, Oshri ; Cohen, Kobi</creatorcontrib><description>We consider the problem of dynamic spectrum access for network utility maximization in multichannel wireless networks. The shared bandwidth is divided into <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula> orthogonal channels. In the beginning of each time slot, each user selects a channel and transmits a packet with a certain transmission probability. After each time slot, each user that has transmitted a packet receives a local observation indicating whether its packet was successfully delivered or not (i.e., ACK signal). The objective is a multi-user strategy for accessing the spectrum that maximizes a certain network utility in a distributed manner without online coordination or message exchanges between users. Obtaining an optimal solution for the spectrum access problem is computationally expensive, in general, due to the large-state space and partial observability of the states. To tackle this problem, we develop a novel distributed dynamic spectrum access algorithm based on deep multi-user reinforcement leaning. Specifically, at each time slot, each user maps its current state to the spectrum access actions based on a trained deep-Q network used to maximize the objective function. Game theoretic analysis of the system dynamics is developed for establishing design principles for the implementation of the algorithm. The experimental results demonstrate the strong performance of the algorithm.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2018.2879433</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Bandwidths ; deep reinforcement learning ; Dynamic spectrum access ; Game theory ; Games ; Heuristic algorithms ; medium access control (MAC) protocols ; multi-agent learning ; Multichannel communication ; Observability (systems) ; Optimization ; Prediction algorithms ; Spectrum allocation ; System dynamics ; Training ; Wireless communication ; Wireless networks</subject><ispartof>IEEE transactions on wireless communications, 2019-01, Vol.18 (1), p.310-323</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-8708c89b4c969f54069091c4e8e8aab2d6b41b1586776c9dc6d9977440a29c253</citedby><cites>FETCH-LOGICAL-c333t-8708c89b4c969f54069091c4e8e8aab2d6b41b1586776c9dc6d9977440a29c253</cites><orcidid>0000-0003-0532-009X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8532121$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8532121$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Naparstek, Oshri</creatorcontrib><creatorcontrib>Cohen, Kobi</creatorcontrib><title>Deep Multi-User Reinforcement Learning for Distributed Dynamic Spectrum Access</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>We consider the problem of dynamic spectrum access for network utility maximization in multichannel wireless networks. The shared bandwidth is divided into <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula> orthogonal channels. In the beginning of each time slot, each user selects a channel and transmits a packet with a certain transmission probability. After each time slot, each user that has transmitted a packet receives a local observation indicating whether its packet was successfully delivered or not (i.e., ACK signal). The objective is a multi-user strategy for accessing the spectrum that maximizes a certain network utility in a distributed manner without online coordination or message exchanges between users. Obtaining an optimal solution for the spectrum access problem is computationally expensive, in general, due to the large-state space and partial observability of the states. To tackle this problem, we develop a novel distributed dynamic spectrum access algorithm based on deep multi-user reinforcement leaning. Specifically, at each time slot, each user maps its current state to the spectrum access actions based on a trained deep-Q network used to maximize the objective function. Game theoretic analysis of the system dynamics is developed for establishing design principles for the implementation of the algorithm. The experimental results demonstrate the strong performance of the algorithm.</description><subject>Algorithms</subject><subject>Bandwidths</subject><subject>deep reinforcement learning</subject><subject>Dynamic spectrum access</subject><subject>Game theory</subject><subject>Games</subject><subject>Heuristic algorithms</subject><subject>medium access control (MAC) protocols</subject><subject>multi-agent learning</subject><subject>Multichannel communication</subject><subject>Observability (systems)</subject><subject>Optimization</subject><subject>Prediction algorithms</subject><subject>Spectrum allocation</subject><subject>System dynamics</subject><subject>Training</subject><subject>Wireless communication</subject><subject>Wireless networks</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kElLA0EQRhtRMEbvgpcGzxN7X44hcYOooAkem5meGumQWeyeOeTfOyHBU30U76uCh9AtJTNKiX1Yfy9mjFAzY0ZbwfkZmlApTcaYMOeHzFVGmVaX6CqlLSFUKykn6H0J0OG3YdeHbJMg4k8ITdVGDzU0PV5BHpvQ_OBxhZch9TEUQw8lXu6bvA4ef3Xg-zjUeO49pHSNLqp8l-DmNKdo8_S4Xrxkq4_n18V8lXnOeZ8ZTYw3thDeKltJQZQllnoBBkyeF6xUhaAFlUZprbwtvSqt1VoIkjPrmeRTdH-828X2d4DUu207xGZ86RhVY09oakeKHCkf25QiVK6Loc7j3lHiDtbcaM0drLmTtbFyd6wEAPjHjeSMMsr_AOFyZ14</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Naparstek, Oshri</creator><creator>Cohen, Kobi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0532-009X</orcidid></search><sort><creationdate>201901</creationdate><title>Deep Multi-User Reinforcement Learning for Distributed Dynamic Spectrum Access</title><author>Naparstek, Oshri ; Cohen, Kobi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-8708c89b4c969f54069091c4e8e8aab2d6b41b1586776c9dc6d9977440a29c253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Bandwidths</topic><topic>deep reinforcement learning</topic><topic>Dynamic spectrum access</topic><topic>Game theory</topic><topic>Games</topic><topic>Heuristic algorithms</topic><topic>medium access control (MAC) protocols</topic><topic>multi-agent learning</topic><topic>Multichannel communication</topic><topic>Observability (systems)</topic><topic>Optimization</topic><topic>Prediction algorithms</topic><topic>Spectrum allocation</topic><topic>System dynamics</topic><topic>Training</topic><topic>Wireless communication</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naparstek, Oshri</creatorcontrib><creatorcontrib>Cohen, Kobi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Naparstek, Oshri</au><au>Cohen, Kobi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Multi-User Reinforcement Learning for Distributed Dynamic Spectrum Access</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2019-01</date><risdate>2019</risdate><volume>18</volume><issue>1</issue><spage>310</spage><epage>323</epage><pages>310-323</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>We consider the problem of dynamic spectrum access for network utility maximization in multichannel wireless networks. The shared bandwidth is divided into <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula> orthogonal channels. In the beginning of each time slot, each user selects a channel and transmits a packet with a certain transmission probability. After each time slot, each user that has transmitted a packet receives a local observation indicating whether its packet was successfully delivered or not (i.e., ACK signal). The objective is a multi-user strategy for accessing the spectrum that maximizes a certain network utility in a distributed manner without online coordination or message exchanges between users. Obtaining an optimal solution for the spectrum access problem is computationally expensive, in general, due to the large-state space and partial observability of the states. To tackle this problem, we develop a novel distributed dynamic spectrum access algorithm based on deep multi-user reinforcement leaning. Specifically, at each time slot, each user maps its current state to the spectrum access actions based on a trained deep-Q network used to maximize the objective function. Game theoretic analysis of the system dynamics is developed for establishing design principles for the implementation of the algorithm. The experimental results demonstrate the strong performance of the algorithm.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2018.2879433</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0532-009X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2019-01, Vol.18 (1), p.310-323 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_proquest_journals_2165864719 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Bandwidths deep reinforcement learning Dynamic spectrum access Game theory Games Heuristic algorithms medium access control (MAC) protocols multi-agent learning Multichannel communication Observability (systems) Optimization Prediction algorithms Spectrum allocation System dynamics Training Wireless communication Wireless networks |
title | Deep Multi-User Reinforcement Learning for Distributed Dynamic Spectrum Access |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A00%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Multi-User%20Reinforcement%20Learning%20for%20Distributed%20Dynamic%20Spectrum%20Access&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Naparstek,%20Oshri&rft.date=2019-01&rft.volume=18&rft.issue=1&rft.spage=310&rft.epage=323&rft.pages=310-323&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2018.2879433&rft_dat=%3Cproquest_RIE%3E2165864719%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2165864719&rft_id=info:pmid/&rft_ieee_id=8532121&rfr_iscdi=true |