Efficient Task Scheduling With Stochastic Delay Cost in Mobile Edge Computing
We propose a new efficient and effective task scheduling approach with stochastic time cost for computation offloading in mobile edge computing. We developed an optimization model that minimizes the maximum tolerable delay (MTD) by considering both the average delay and delay jitter. We also propose...
Gespeichert in:
Veröffentlicht in: | IEEE communications letters 2019-01, Vol.23 (1), p.4-7 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | 1 |
container_start_page | 4 |
container_title | IEEE communications letters |
container_volume | 23 |
creator | Zhang, Wenyu Zhang, Zhenjiang Zeadally, Sherali Chao, Han-Chieh |
description | We propose a new efficient and effective task scheduling approach with stochastic time cost for computation offloading in mobile edge computing. We developed an optimization model that minimizes the maximum tolerable delay (MTD) by considering both the average delay and delay jitter. We also proposed an efficient conservative heterogeneous earliest-finish-time algorithm to solve the MTD-minimization problem. Numerical results obtained with our proposed approach demonstrate its effectiveness over previously proposed techniques. |
doi_str_mv | 10.1109/LCOMM.2018.2879317 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2165852550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8523681</ieee_id><sourcerecordid>2165852550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-57e951f143de9490126d1502b61db75aec2125aed35d249bf1d45581d51362c53</originalsourceid><addsrcrecordid>eNo9UMtOwzAQtBBIlMIPwMUS5xSvEyf2EYXykBL10CKOVmI7rUualNg59O9xacVlZ7WamdUMQvdAZgBEPBX5oixnlACfUZ6JGLILNAHGeETDuAw74SLKMsGv0Y1zW0IIpwwmqJw3jVXWdB6vKveNl2pj9Njabo2_rN_gpe_VpnLeKvxi2uqA8955bDtc9rVtDZ7rtQm33X70QXOLrpqqdebujFP0-Tpf5e9RsXj7yJ-LSFHBfMQyIxg0kMTaiEQQoKkGRmidgq4zVhlFgQbQMdM0EXUDOgkxQDOIU6pYPEWPJ9_90P-Mxnm57cehCy8lhZRxFlKTwKInlhp65wbTyP1gd9VwkEDksTb5V5s81ibPtQXRw0lkjTH_guAYpxziX1xZZ3E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2165852550</pqid></control><display><type>article</type><title>Efficient Task Scheduling With Stochastic Delay Cost in Mobile Edge Computing</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Wenyu ; Zhang, Zhenjiang ; Zeadally, Sherali ; Chao, Han-Chieh</creator><creatorcontrib>Zhang, Wenyu ; Zhang, Zhenjiang ; Zeadally, Sherali ; Chao, Han-Chieh</creatorcontrib><description>We propose a new efficient and effective task scheduling approach with stochastic time cost for computation offloading in mobile edge computing. We developed an optimization model that minimizes the maximum tolerable delay (MTD) by considering both the average delay and delay jitter. We also proposed an efficient conservative heterogeneous earliest-finish-time algorithm to solve the MTD-minimization problem. Numerical results obtained with our proposed approach demonstrate its effectiveness over previously proposed techniques.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2018.2879317</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation algorithms ; Call graph ; Computation offloading ; Computing costs ; Delay ; delay jitter ; Delays ; Edge computing ; Estimation ; Mathematical models ; Mobile computing ; mobile edge computing ; Probability density function ; Scheduling ; stochastic delay ; Stochastic processes ; Task analysis ; Task scheduling ; Vibration</subject><ispartof>IEEE communications letters, 2019-01, Vol.23 (1), p.4-7</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-57e951f143de9490126d1502b61db75aec2125aed35d249bf1d45581d51362c53</citedby><cites>FETCH-LOGICAL-c295t-57e951f143de9490126d1502b61db75aec2125aed35d249bf1d45581d51362c53</cites><orcidid>0000-0003-0217-3012 ; 0000-0001-7350-0805 ; 0000-0002-5982-8190</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8523681$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8523681$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Wenyu</creatorcontrib><creatorcontrib>Zhang, Zhenjiang</creatorcontrib><creatorcontrib>Zeadally, Sherali</creatorcontrib><creatorcontrib>Chao, Han-Chieh</creatorcontrib><title>Efficient Task Scheduling With Stochastic Delay Cost in Mobile Edge Computing</title><title>IEEE communications letters</title><addtitle>COML</addtitle><description>We propose a new efficient and effective task scheduling approach with stochastic time cost for computation offloading in mobile edge computing. We developed an optimization model that minimizes the maximum tolerable delay (MTD) by considering both the average delay and delay jitter. We also proposed an efficient conservative heterogeneous earliest-finish-time algorithm to solve the MTD-minimization problem. Numerical results obtained with our proposed approach demonstrate its effectiveness over previously proposed techniques.</description><subject>Approximation algorithms</subject><subject>Call graph</subject><subject>Computation offloading</subject><subject>Computing costs</subject><subject>Delay</subject><subject>delay jitter</subject><subject>Delays</subject><subject>Edge computing</subject><subject>Estimation</subject><subject>Mathematical models</subject><subject>Mobile computing</subject><subject>mobile edge computing</subject><subject>Probability density function</subject><subject>Scheduling</subject><subject>stochastic delay</subject><subject>Stochastic processes</subject><subject>Task analysis</subject><subject>Task scheduling</subject><subject>Vibration</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UMtOwzAQtBBIlMIPwMUS5xSvEyf2EYXykBL10CKOVmI7rUualNg59O9xacVlZ7WamdUMQvdAZgBEPBX5oixnlACfUZ6JGLILNAHGeETDuAw74SLKMsGv0Y1zW0IIpwwmqJw3jVXWdB6vKveNl2pj9Njabo2_rN_gpe_VpnLeKvxi2uqA8955bDtc9rVtDZ7rtQm33X70QXOLrpqqdebujFP0-Tpf5e9RsXj7yJ-LSFHBfMQyIxg0kMTaiEQQoKkGRmidgq4zVhlFgQbQMdM0EXUDOgkxQDOIU6pYPEWPJ9_90P-Mxnm57cehCy8lhZRxFlKTwKInlhp65wbTyP1gd9VwkEDksTb5V5s81ibPtQXRw0lkjTH_guAYpxziX1xZZ3E</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Zhang, Wenyu</creator><creator>Zhang, Zhenjiang</creator><creator>Zeadally, Sherali</creator><creator>Chao, Han-Chieh</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0217-3012</orcidid><orcidid>https://orcid.org/0000-0001-7350-0805</orcidid><orcidid>https://orcid.org/0000-0002-5982-8190</orcidid></search><sort><creationdate>201901</creationdate><title>Efficient Task Scheduling With Stochastic Delay Cost in Mobile Edge Computing</title><author>Zhang, Wenyu ; Zhang, Zhenjiang ; Zeadally, Sherali ; Chao, Han-Chieh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-57e951f143de9490126d1502b61db75aec2125aed35d249bf1d45581d51362c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Approximation algorithms</topic><topic>Call graph</topic><topic>Computation offloading</topic><topic>Computing costs</topic><topic>Delay</topic><topic>delay jitter</topic><topic>Delays</topic><topic>Edge computing</topic><topic>Estimation</topic><topic>Mathematical models</topic><topic>Mobile computing</topic><topic>mobile edge computing</topic><topic>Probability density function</topic><topic>Scheduling</topic><topic>stochastic delay</topic><topic>Stochastic processes</topic><topic>Task analysis</topic><topic>Task scheduling</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wenyu</creatorcontrib><creatorcontrib>Zhang, Zhenjiang</creatorcontrib><creatorcontrib>Zeadally, Sherali</creatorcontrib><creatorcontrib>Chao, Han-Chieh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Wenyu</au><au>Zhang, Zhenjiang</au><au>Zeadally, Sherali</au><au>Chao, Han-Chieh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Task Scheduling With Stochastic Delay Cost in Mobile Edge Computing</atitle><jtitle>IEEE communications letters</jtitle><stitle>COML</stitle><date>2019-01</date><risdate>2019</risdate><volume>23</volume><issue>1</issue><spage>4</spage><epage>7</epage><pages>4-7</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>We propose a new efficient and effective task scheduling approach with stochastic time cost for computation offloading in mobile edge computing. We developed an optimization model that minimizes the maximum tolerable delay (MTD) by considering both the average delay and delay jitter. We also proposed an efficient conservative heterogeneous earliest-finish-time algorithm to solve the MTD-minimization problem. Numerical results obtained with our proposed approach demonstrate its effectiveness over previously proposed techniques.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2018.2879317</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-0217-3012</orcidid><orcidid>https://orcid.org/0000-0001-7350-0805</orcidid><orcidid>https://orcid.org/0000-0002-5982-8190</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-7798 |
ispartof | IEEE communications letters, 2019-01, Vol.23 (1), p.4-7 |
issn | 1089-7798 1558-2558 |
language | eng |
recordid | cdi_proquest_journals_2165852550 |
source | IEEE Electronic Library (IEL) |
subjects | Approximation algorithms Call graph Computation offloading Computing costs Delay delay jitter Delays Edge computing Estimation Mathematical models Mobile computing mobile edge computing Probability density function Scheduling stochastic delay Stochastic processes Task analysis Task scheduling Vibration |
title | Efficient Task Scheduling With Stochastic Delay Cost in Mobile Edge Computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T09%3A26%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Task%20Scheduling%20With%20Stochastic%20Delay%20Cost%20in%20Mobile%20Edge%20Computing&rft.jtitle=IEEE%20communications%20letters&rft.au=Zhang,%20Wenyu&rft.date=2019-01&rft.volume=23&rft.issue=1&rft.spage=4&rft.epage=7&rft.pages=4-7&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2018.2879317&rft_dat=%3Cproquest_RIE%3E2165852550%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2165852550&rft_id=info:pmid/&rft_ieee_id=8523681&rfr_iscdi=true |