Efficient Task Scheduling With Stochastic Delay Cost in Mobile Edge Computing

We propose a new efficient and effective task scheduling approach with stochastic time cost for computation offloading in mobile edge computing. We developed an optimization model that minimizes the maximum tolerable delay (MTD) by considering both the average delay and delay jitter. We also propose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2019-01, Vol.23 (1), p.4-7
Hauptverfasser: Zhang, Wenyu, Zhang, Zhenjiang, Zeadally, Sherali, Chao, Han-Chieh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 1
container_start_page 4
container_title IEEE communications letters
container_volume 23
creator Zhang, Wenyu
Zhang, Zhenjiang
Zeadally, Sherali
Chao, Han-Chieh
description We propose a new efficient and effective task scheduling approach with stochastic time cost for computation offloading in mobile edge computing. We developed an optimization model that minimizes the maximum tolerable delay (MTD) by considering both the average delay and delay jitter. We also proposed an efficient conservative heterogeneous earliest-finish-time algorithm to solve the MTD-minimization problem. Numerical results obtained with our proposed approach demonstrate its effectiveness over previously proposed techniques.
doi_str_mv 10.1109/LCOMM.2018.2879317
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2165852550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8523681</ieee_id><sourcerecordid>2165852550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-57e951f143de9490126d1502b61db75aec2125aed35d249bf1d45581d51362c53</originalsourceid><addsrcrecordid>eNo9UMtOwzAQtBBIlMIPwMUS5xSvEyf2EYXykBL10CKOVmI7rUualNg59O9xacVlZ7WamdUMQvdAZgBEPBX5oixnlACfUZ6JGLILNAHGeETDuAw74SLKMsGv0Y1zW0IIpwwmqJw3jVXWdB6vKveNl2pj9Njabo2_rN_gpe_VpnLeKvxi2uqA8955bDtc9rVtDZ7rtQm33X70QXOLrpqqdebujFP0-Tpf5e9RsXj7yJ-LSFHBfMQyIxg0kMTaiEQQoKkGRmidgq4zVhlFgQbQMdM0EXUDOgkxQDOIU6pYPEWPJ9_90P-Mxnm57cehCy8lhZRxFlKTwKInlhp65wbTyP1gd9VwkEDksTb5V5s81ibPtQXRw0lkjTH_guAYpxziX1xZZ3E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2165852550</pqid></control><display><type>article</type><title>Efficient Task Scheduling With Stochastic Delay Cost in Mobile Edge Computing</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Wenyu ; Zhang, Zhenjiang ; Zeadally, Sherali ; Chao, Han-Chieh</creator><creatorcontrib>Zhang, Wenyu ; Zhang, Zhenjiang ; Zeadally, Sherali ; Chao, Han-Chieh</creatorcontrib><description>We propose a new efficient and effective task scheduling approach with stochastic time cost for computation offloading in mobile edge computing. We developed an optimization model that minimizes the maximum tolerable delay (MTD) by considering both the average delay and delay jitter. We also proposed an efficient conservative heterogeneous earliest-finish-time algorithm to solve the MTD-minimization problem. Numerical results obtained with our proposed approach demonstrate its effectiveness over previously proposed techniques.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2018.2879317</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation algorithms ; Call graph ; Computation offloading ; Computing costs ; Delay ; delay jitter ; Delays ; Edge computing ; Estimation ; Mathematical models ; Mobile computing ; mobile edge computing ; Probability density function ; Scheduling ; stochastic delay ; Stochastic processes ; Task analysis ; Task scheduling ; Vibration</subject><ispartof>IEEE communications letters, 2019-01, Vol.23 (1), p.4-7</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-57e951f143de9490126d1502b61db75aec2125aed35d249bf1d45581d51362c53</citedby><cites>FETCH-LOGICAL-c295t-57e951f143de9490126d1502b61db75aec2125aed35d249bf1d45581d51362c53</cites><orcidid>0000-0003-0217-3012 ; 0000-0001-7350-0805 ; 0000-0002-5982-8190</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8523681$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8523681$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Wenyu</creatorcontrib><creatorcontrib>Zhang, Zhenjiang</creatorcontrib><creatorcontrib>Zeadally, Sherali</creatorcontrib><creatorcontrib>Chao, Han-Chieh</creatorcontrib><title>Efficient Task Scheduling With Stochastic Delay Cost in Mobile Edge Computing</title><title>IEEE communications letters</title><addtitle>COML</addtitle><description>We propose a new efficient and effective task scheduling approach with stochastic time cost for computation offloading in mobile edge computing. We developed an optimization model that minimizes the maximum tolerable delay (MTD) by considering both the average delay and delay jitter. We also proposed an efficient conservative heterogeneous earliest-finish-time algorithm to solve the MTD-minimization problem. Numerical results obtained with our proposed approach demonstrate its effectiveness over previously proposed techniques.</description><subject>Approximation algorithms</subject><subject>Call graph</subject><subject>Computation offloading</subject><subject>Computing costs</subject><subject>Delay</subject><subject>delay jitter</subject><subject>Delays</subject><subject>Edge computing</subject><subject>Estimation</subject><subject>Mathematical models</subject><subject>Mobile computing</subject><subject>mobile edge computing</subject><subject>Probability density function</subject><subject>Scheduling</subject><subject>stochastic delay</subject><subject>Stochastic processes</subject><subject>Task analysis</subject><subject>Task scheduling</subject><subject>Vibration</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UMtOwzAQtBBIlMIPwMUS5xSvEyf2EYXykBL10CKOVmI7rUualNg59O9xacVlZ7WamdUMQvdAZgBEPBX5oixnlACfUZ6JGLILNAHGeETDuAw74SLKMsGv0Y1zW0IIpwwmqJw3jVXWdB6vKveNl2pj9Njabo2_rN_gpe_VpnLeKvxi2uqA8955bDtc9rVtDZ7rtQm33X70QXOLrpqqdebujFP0-Tpf5e9RsXj7yJ-LSFHBfMQyIxg0kMTaiEQQoKkGRmidgq4zVhlFgQbQMdM0EXUDOgkxQDOIU6pYPEWPJ9_90P-Mxnm57cehCy8lhZRxFlKTwKInlhp65wbTyP1gd9VwkEDksTb5V5s81ibPtQXRw0lkjTH_guAYpxziX1xZZ3E</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Zhang, Wenyu</creator><creator>Zhang, Zhenjiang</creator><creator>Zeadally, Sherali</creator><creator>Chao, Han-Chieh</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0217-3012</orcidid><orcidid>https://orcid.org/0000-0001-7350-0805</orcidid><orcidid>https://orcid.org/0000-0002-5982-8190</orcidid></search><sort><creationdate>201901</creationdate><title>Efficient Task Scheduling With Stochastic Delay Cost in Mobile Edge Computing</title><author>Zhang, Wenyu ; Zhang, Zhenjiang ; Zeadally, Sherali ; Chao, Han-Chieh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-57e951f143de9490126d1502b61db75aec2125aed35d249bf1d45581d51362c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Approximation algorithms</topic><topic>Call graph</topic><topic>Computation offloading</topic><topic>Computing costs</topic><topic>Delay</topic><topic>delay jitter</topic><topic>Delays</topic><topic>Edge computing</topic><topic>Estimation</topic><topic>Mathematical models</topic><topic>Mobile computing</topic><topic>mobile edge computing</topic><topic>Probability density function</topic><topic>Scheduling</topic><topic>stochastic delay</topic><topic>Stochastic processes</topic><topic>Task analysis</topic><topic>Task scheduling</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wenyu</creatorcontrib><creatorcontrib>Zhang, Zhenjiang</creatorcontrib><creatorcontrib>Zeadally, Sherali</creatorcontrib><creatorcontrib>Chao, Han-Chieh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Wenyu</au><au>Zhang, Zhenjiang</au><au>Zeadally, Sherali</au><au>Chao, Han-Chieh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Task Scheduling With Stochastic Delay Cost in Mobile Edge Computing</atitle><jtitle>IEEE communications letters</jtitle><stitle>COML</stitle><date>2019-01</date><risdate>2019</risdate><volume>23</volume><issue>1</issue><spage>4</spage><epage>7</epage><pages>4-7</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>We propose a new efficient and effective task scheduling approach with stochastic time cost for computation offloading in mobile edge computing. We developed an optimization model that minimizes the maximum tolerable delay (MTD) by considering both the average delay and delay jitter. We also proposed an efficient conservative heterogeneous earliest-finish-time algorithm to solve the MTD-minimization problem. Numerical results obtained with our proposed approach demonstrate its effectiveness over previously proposed techniques.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2018.2879317</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-0217-3012</orcidid><orcidid>https://orcid.org/0000-0001-7350-0805</orcidid><orcidid>https://orcid.org/0000-0002-5982-8190</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7798
ispartof IEEE communications letters, 2019-01, Vol.23 (1), p.4-7
issn 1089-7798
1558-2558
language eng
recordid cdi_proquest_journals_2165852550
source IEEE Electronic Library (IEL)
subjects Approximation algorithms
Call graph
Computation offloading
Computing costs
Delay
delay jitter
Delays
Edge computing
Estimation
Mathematical models
Mobile computing
mobile edge computing
Probability density function
Scheduling
stochastic delay
Stochastic processes
Task analysis
Task scheduling
Vibration
title Efficient Task Scheduling With Stochastic Delay Cost in Mobile Edge Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T09%3A26%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Task%20Scheduling%20With%20Stochastic%20Delay%20Cost%20in%20Mobile%20Edge%20Computing&rft.jtitle=IEEE%20communications%20letters&rft.au=Zhang,%20Wenyu&rft.date=2019-01&rft.volume=23&rft.issue=1&rft.spage=4&rft.epage=7&rft.pages=4-7&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2018.2879317&rft_dat=%3Cproquest_RIE%3E2165852550%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2165852550&rft_id=info:pmid/&rft_ieee_id=8523681&rfr_iscdi=true