The Role of Reactive Iron in the Preservation of Terrestrial Organic Carbon in Estuarine Sediments

To better understand the role of reactive Fe (FeR) in the preservation of sedimentary organic carbon (SOC) in estuarine sediments, we examined specific surface area, grain size composition, total OC (TOC), lignin phenols, FeR, FeR‐associated OC (Fe‐OC) and lignin phenols (Fe‐lignin), and δ13C of FeR...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Biogeosciences 2018-12, Vol.123 (12), p.3556-3569
Hauptverfasser: Zhao, B., Yao, P., Bianchi, T. S., Shields, M. R., Cui, X. Q., Zhang, X. W., Huang, X. Y., Schröder, C., Zhao, J., Yu, Z. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3569
container_issue 12
container_start_page 3556
container_title Journal of geophysical research. Biogeosciences
container_volume 123
creator Zhao, B.
Yao, P.
Bianchi, T. S.
Shields, M. R.
Cui, X. Q.
Zhang, X. W.
Huang, X. Y.
Schröder, C.
Zhao, J.
Yu, Z. G.
description To better understand the role of reactive Fe (FeR) in the preservation of sedimentary organic carbon (SOC) in estuarine sediments, we examined specific surface area, grain size composition, total OC (TOC), lignin phenols, FeR, FeR‐associated OC (Fe‐OC) and lignin phenols (Fe‐lignin), and δ13C of FeR‐associated OC (δ13CFe‐OC) in surface sediments of the Changjiang Estuary and adjacent shelf. An estimated 7.4 ± 3.5% of the OC was directly bound with FeR in the Changjiang Estuary and adjacent shelf. Unusually low TOC/specific surface area loadings and Fe‐OC/Fe ratios in mobile muds suggest that frequent physical reworking may reduce FeR binding with OC, with selective loss of marine OC. More depleted 13CFe‐OC relative to 13C of TOC (13Cbulk) in deltaic regions and mobile muds showed that FeR was largely associated with terrestrial OC, derived from extensive riverine OC and Fe inputs. A higher proportion of hematite in the mobile muds compared to the offshore samples indicated that Fe oxides are likely subjected to selective sorting and/or become mature during long‐term sediment transport. When considering the percentage of Fe‐OC to SOC and SOC burial rates in different marine environments (e.g., nondeltaic shelf, anoxic basins, slope, and deep sea), our findings suggest that about 15.6 ± 6.5% of SOC is directly bound to FeR on a global scale, which is lower than the previous estimation (~21.5%). This work further supports the notion of a Rusty Sink where, in this case, FeR plays an important role in the preservation and potential transport of terrestrial OC in the marine environment. Key Points Extensive sediment resuspension may reduce reactive iron binding with marine‐derived OC About 15.6% of sedimentary OC burial is directly associated with reactive iron on a global scale The reactive iron plays an important role in stabilization of terrestrial SOC
doi_str_mv 10.1029/2018JG004649
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2165845527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2165845527</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4774-47580725b94da17f42832cfdf68700cc9277a687bcb0ecbbb3441d1f948841ba3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGpv_oCAV1eTbHaTHKXUtaVQqfUckmyiKdvdmmwr_fdGVsSTc5nhnWc-eAG4xugOIyLuCcJ8USFESyrOwIjgUmRclPj8ty7ySzCJcYtS8CRhPAJ6827humss7BxcW2V6f7RwHroW-hb2qfkcbLThqHqftARtbEhKH7xq4Cq8qdYbOFVBDxOz2B9U8K2FL7b2O9v28QpcONVEO_nJY_D6ONtMn7LlqppPH5aZoozRjLKCI0YKLWitMHOU8JwYV7uSM4SMEYQxlWptNLJGa51TimvsBOWcYq3yMbgZ9u5D93FIL8ptdwhtOimTAQWnRUFYom4HyoQuxmCd3Ae_U-EkMZLfRsq_RiY8H_BP39jTv6xcVOuKYMJo_gWuAHNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2165845527</pqid></control><display><type>article</type><title>The Role of Reactive Iron in the Preservation of Terrestrial Organic Carbon in Estuarine Sediments</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>Alma/SFX Local Collection</source><creator>Zhao, B. ; Yao, P. ; Bianchi, T. S. ; Shields, M. R. ; Cui, X. Q. ; Zhang, X. W. ; Huang, X. Y. ; Schröder, C. ; Zhao, J. ; Yu, Z. G.</creator><creatorcontrib>Zhao, B. ; Yao, P. ; Bianchi, T. S. ; Shields, M. R. ; Cui, X. Q. ; Zhang, X. W. ; Huang, X. Y. ; Schröder, C. ; Zhao, J. ; Yu, Z. G.</creatorcontrib><description>To better understand the role of reactive Fe (FeR) in the preservation of sedimentary organic carbon (SOC) in estuarine sediments, we examined specific surface area, grain size composition, total OC (TOC), lignin phenols, FeR, FeR‐associated OC (Fe‐OC) and lignin phenols (Fe‐lignin), and δ13C of FeR‐associated OC (δ13CFe‐OC) in surface sediments of the Changjiang Estuary and adjacent shelf. An estimated 7.4 ± 3.5% of the OC was directly bound with FeR in the Changjiang Estuary and adjacent shelf. Unusually low TOC/specific surface area loadings and Fe‐OC/Fe ratios in mobile muds suggest that frequent physical reworking may reduce FeR binding with OC, with selective loss of marine OC. More depleted 13CFe‐OC relative to 13C of TOC (13Cbulk) in deltaic regions and mobile muds showed that FeR was largely associated with terrestrial OC, derived from extensive riverine OC and Fe inputs. A higher proportion of hematite in the mobile muds compared to the offshore samples indicated that Fe oxides are likely subjected to selective sorting and/or become mature during long‐term sediment transport. When considering the percentage of Fe‐OC to SOC and SOC burial rates in different marine environments (e.g., nondeltaic shelf, anoxic basins, slope, and deep sea), our findings suggest that about 15.6 ± 6.5% of SOC is directly bound to FeR on a global scale, which is lower than the previous estimation (~21.5%). This work further supports the notion of a Rusty Sink where, in this case, FeR plays an important role in the preservation and potential transport of terrestrial OC in the marine environment. Key Points Extensive sediment resuspension may reduce reactive iron binding with marine‐derived OC About 15.6% of sedimentary OC burial is directly associated with reactive iron on a global scale The reactive iron plays an important role in stabilization of terrestrial SOC</description><identifier>ISSN: 2169-8953</identifier><identifier>EISSN: 2169-8961</identifier><identifier>DOI: 10.1029/2018JG004649</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Anoxia ; Anoxic basins ; Anoxic sediments ; Basins ; Brackishwater environment ; Changjiang Estuary ; Deep sea ; Deep sea environments ; Estuaries ; Estuarine dynamics ; Estuarine environments ; Haematite ; Hematite ; Iron ; Lignin ; Marine environment ; mobile muds ; Ocean basins ; OC‐Fe associations ; Offshore ; Organic carbon ; organic carbon preservation ; Oxides ; Phenols ; Preservation ; Ratios ; reactive iron ; Sediment ; Sediment transport ; Sediments ; Size distribution ; Specific surface ; Surface area ; Total organic carbon ; Transport</subject><ispartof>Journal of geophysical research. Biogeosciences, 2018-12, Vol.123 (12), p.3556-3569</ispartof><rights>2018. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4774-47580725b94da17f42832cfdf68700cc9277a687bcb0ecbbb3441d1f948841ba3</citedby><cites>FETCH-LOGICAL-a4774-47580725b94da17f42832cfdf68700cc9277a687bcb0ecbbb3441d1f948841ba3</cites><orcidid>0000-0002-8906-4929 ; 0000-0003-1931-810X ; 0000-0002-6194-2689 ; 0000-0003-4508-7050 ; 0000-0002-3068-2933 ; 0000-0001-6705-7595</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018JG004649$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018JG004649$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,1430,27907,27908,45557,45558,46392,46816</link.rule.ids></links><search><creatorcontrib>Zhao, B.</creatorcontrib><creatorcontrib>Yao, P.</creatorcontrib><creatorcontrib>Bianchi, T. S.</creatorcontrib><creatorcontrib>Shields, M. R.</creatorcontrib><creatorcontrib>Cui, X. Q.</creatorcontrib><creatorcontrib>Zhang, X. W.</creatorcontrib><creatorcontrib>Huang, X. Y.</creatorcontrib><creatorcontrib>Schröder, C.</creatorcontrib><creatorcontrib>Zhao, J.</creatorcontrib><creatorcontrib>Yu, Z. G.</creatorcontrib><title>The Role of Reactive Iron in the Preservation of Terrestrial Organic Carbon in Estuarine Sediments</title><title>Journal of geophysical research. Biogeosciences</title><description>To better understand the role of reactive Fe (FeR) in the preservation of sedimentary organic carbon (SOC) in estuarine sediments, we examined specific surface area, grain size composition, total OC (TOC), lignin phenols, FeR, FeR‐associated OC (Fe‐OC) and lignin phenols (Fe‐lignin), and δ13C of FeR‐associated OC (δ13CFe‐OC) in surface sediments of the Changjiang Estuary and adjacent shelf. An estimated 7.4 ± 3.5% of the OC was directly bound with FeR in the Changjiang Estuary and adjacent shelf. Unusually low TOC/specific surface area loadings and Fe‐OC/Fe ratios in mobile muds suggest that frequent physical reworking may reduce FeR binding with OC, with selective loss of marine OC. More depleted 13CFe‐OC relative to 13C of TOC (13Cbulk) in deltaic regions and mobile muds showed that FeR was largely associated with terrestrial OC, derived from extensive riverine OC and Fe inputs. A higher proportion of hematite in the mobile muds compared to the offshore samples indicated that Fe oxides are likely subjected to selective sorting and/or become mature during long‐term sediment transport. When considering the percentage of Fe‐OC to SOC and SOC burial rates in different marine environments (e.g., nondeltaic shelf, anoxic basins, slope, and deep sea), our findings suggest that about 15.6 ± 6.5% of SOC is directly bound to FeR on a global scale, which is lower than the previous estimation (~21.5%). This work further supports the notion of a Rusty Sink where, in this case, FeR plays an important role in the preservation and potential transport of terrestrial OC in the marine environment. Key Points Extensive sediment resuspension may reduce reactive iron binding with marine‐derived OC About 15.6% of sedimentary OC burial is directly associated with reactive iron on a global scale The reactive iron plays an important role in stabilization of terrestrial SOC</description><subject>Anoxia</subject><subject>Anoxic basins</subject><subject>Anoxic sediments</subject><subject>Basins</subject><subject>Brackishwater environment</subject><subject>Changjiang Estuary</subject><subject>Deep sea</subject><subject>Deep sea environments</subject><subject>Estuaries</subject><subject>Estuarine dynamics</subject><subject>Estuarine environments</subject><subject>Haematite</subject><subject>Hematite</subject><subject>Iron</subject><subject>Lignin</subject><subject>Marine environment</subject><subject>mobile muds</subject><subject>Ocean basins</subject><subject>OC‐Fe associations</subject><subject>Offshore</subject><subject>Organic carbon</subject><subject>organic carbon preservation</subject><subject>Oxides</subject><subject>Phenols</subject><subject>Preservation</subject><subject>Ratios</subject><subject>reactive iron</subject><subject>Sediment</subject><subject>Sediment transport</subject><subject>Sediments</subject><subject>Size distribution</subject><subject>Specific surface</subject><subject>Surface area</subject><subject>Total organic carbon</subject><subject>Transport</subject><issn>2169-8953</issn><issn>2169-8961</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWGpv_oCAV1eTbHaTHKXUtaVQqfUckmyiKdvdmmwr_fdGVsSTc5nhnWc-eAG4xugOIyLuCcJ8USFESyrOwIjgUmRclPj8ty7ySzCJcYtS8CRhPAJ6827humss7BxcW2V6f7RwHroW-hb2qfkcbLThqHqftARtbEhKH7xq4Cq8qdYbOFVBDxOz2B9U8K2FL7b2O9v28QpcONVEO_nJY_D6ONtMn7LlqppPH5aZoozRjLKCI0YKLWitMHOU8JwYV7uSM4SMEYQxlWptNLJGa51TimvsBOWcYq3yMbgZ9u5D93FIL8ptdwhtOimTAQWnRUFYom4HyoQuxmCd3Ae_U-EkMZLfRsq_RiY8H_BP39jTv6xcVOuKYMJo_gWuAHNA</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Zhao, B.</creator><creator>Yao, P.</creator><creator>Bianchi, T. S.</creator><creator>Shields, M. R.</creator><creator>Cui, X. Q.</creator><creator>Zhang, X. W.</creator><creator>Huang, X. Y.</creator><creator>Schröder, C.</creator><creator>Zhao, J.</creator><creator>Yu, Z. G.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-8906-4929</orcidid><orcidid>https://orcid.org/0000-0003-1931-810X</orcidid><orcidid>https://orcid.org/0000-0002-6194-2689</orcidid><orcidid>https://orcid.org/0000-0003-4508-7050</orcidid><orcidid>https://orcid.org/0000-0002-3068-2933</orcidid><orcidid>https://orcid.org/0000-0001-6705-7595</orcidid></search><sort><creationdate>201812</creationdate><title>The Role of Reactive Iron in the Preservation of Terrestrial Organic Carbon in Estuarine Sediments</title><author>Zhao, B. ; Yao, P. ; Bianchi, T. S. ; Shields, M. R. ; Cui, X. Q. ; Zhang, X. W. ; Huang, X. Y. ; Schröder, C. ; Zhao, J. ; Yu, Z. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4774-47580725b94da17f42832cfdf68700cc9277a687bcb0ecbbb3441d1f948841ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anoxia</topic><topic>Anoxic basins</topic><topic>Anoxic sediments</topic><topic>Basins</topic><topic>Brackishwater environment</topic><topic>Changjiang Estuary</topic><topic>Deep sea</topic><topic>Deep sea environments</topic><topic>Estuaries</topic><topic>Estuarine dynamics</topic><topic>Estuarine environments</topic><topic>Haematite</topic><topic>Hematite</topic><topic>Iron</topic><topic>Lignin</topic><topic>Marine environment</topic><topic>mobile muds</topic><topic>Ocean basins</topic><topic>OC‐Fe associations</topic><topic>Offshore</topic><topic>Organic carbon</topic><topic>organic carbon preservation</topic><topic>Oxides</topic><topic>Phenols</topic><topic>Preservation</topic><topic>Ratios</topic><topic>reactive iron</topic><topic>Sediment</topic><topic>Sediment transport</topic><topic>Sediments</topic><topic>Size distribution</topic><topic>Specific surface</topic><topic>Surface area</topic><topic>Total organic carbon</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, B.</creatorcontrib><creatorcontrib>Yao, P.</creatorcontrib><creatorcontrib>Bianchi, T. S.</creatorcontrib><creatorcontrib>Shields, M. R.</creatorcontrib><creatorcontrib>Cui, X. Q.</creatorcontrib><creatorcontrib>Zhang, X. W.</creatorcontrib><creatorcontrib>Huang, X. Y.</creatorcontrib><creatorcontrib>Schröder, C.</creatorcontrib><creatorcontrib>Zhao, J.</creatorcontrib><creatorcontrib>Yu, Z. G.</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of geophysical research. Biogeosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, B.</au><au>Yao, P.</au><au>Bianchi, T. S.</au><au>Shields, M. R.</au><au>Cui, X. Q.</au><au>Zhang, X. W.</au><au>Huang, X. Y.</au><au>Schröder, C.</au><au>Zhao, J.</au><au>Yu, Z. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of Reactive Iron in the Preservation of Terrestrial Organic Carbon in Estuarine Sediments</atitle><jtitle>Journal of geophysical research. Biogeosciences</jtitle><date>2018-12</date><risdate>2018</risdate><volume>123</volume><issue>12</issue><spage>3556</spage><epage>3569</epage><pages>3556-3569</pages><issn>2169-8953</issn><eissn>2169-8961</eissn><abstract>To better understand the role of reactive Fe (FeR) in the preservation of sedimentary organic carbon (SOC) in estuarine sediments, we examined specific surface area, grain size composition, total OC (TOC), lignin phenols, FeR, FeR‐associated OC (Fe‐OC) and lignin phenols (Fe‐lignin), and δ13C of FeR‐associated OC (δ13CFe‐OC) in surface sediments of the Changjiang Estuary and adjacent shelf. An estimated 7.4 ± 3.5% of the OC was directly bound with FeR in the Changjiang Estuary and adjacent shelf. Unusually low TOC/specific surface area loadings and Fe‐OC/Fe ratios in mobile muds suggest that frequent physical reworking may reduce FeR binding with OC, with selective loss of marine OC. More depleted 13CFe‐OC relative to 13C of TOC (13Cbulk) in deltaic regions and mobile muds showed that FeR was largely associated with terrestrial OC, derived from extensive riverine OC and Fe inputs. A higher proportion of hematite in the mobile muds compared to the offshore samples indicated that Fe oxides are likely subjected to selective sorting and/or become mature during long‐term sediment transport. When considering the percentage of Fe‐OC to SOC and SOC burial rates in different marine environments (e.g., nondeltaic shelf, anoxic basins, slope, and deep sea), our findings suggest that about 15.6 ± 6.5% of SOC is directly bound to FeR on a global scale, which is lower than the previous estimation (~21.5%). This work further supports the notion of a Rusty Sink where, in this case, FeR plays an important role in the preservation and potential transport of terrestrial OC in the marine environment. Key Points Extensive sediment resuspension may reduce reactive iron binding with marine‐derived OC About 15.6% of sedimentary OC burial is directly associated with reactive iron on a global scale The reactive iron plays an important role in stabilization of terrestrial SOC</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2018JG004649</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8906-4929</orcidid><orcidid>https://orcid.org/0000-0003-1931-810X</orcidid><orcidid>https://orcid.org/0000-0002-6194-2689</orcidid><orcidid>https://orcid.org/0000-0003-4508-7050</orcidid><orcidid>https://orcid.org/0000-0002-3068-2933</orcidid><orcidid>https://orcid.org/0000-0001-6705-7595</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-8953
ispartof Journal of geophysical research. Biogeosciences, 2018-12, Vol.123 (12), p.3556-3569
issn 2169-8953
2169-8961
language eng
recordid cdi_proquest_journals_2165845527
source Wiley Online Library Journals Frontfile Complete; Wiley Free Content; Alma/SFX Local Collection
subjects Anoxia
Anoxic basins
Anoxic sediments
Basins
Brackishwater environment
Changjiang Estuary
Deep sea
Deep sea environments
Estuaries
Estuarine dynamics
Estuarine environments
Haematite
Hematite
Iron
Lignin
Marine environment
mobile muds
Ocean basins
OC‐Fe associations
Offshore
Organic carbon
organic carbon preservation
Oxides
Phenols
Preservation
Ratios
reactive iron
Sediment
Sediment transport
Sediments
Size distribution
Specific surface
Surface area
Total organic carbon
Transport
title The Role of Reactive Iron in the Preservation of Terrestrial Organic Carbon in Estuarine Sediments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A11%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20Reactive%20Iron%20in%20the%20Preservation%20of%20Terrestrial%20Organic%20Carbon%20in%20Estuarine%20Sediments&rft.jtitle=Journal%20of%20geophysical%20research.%20Biogeosciences&rft.au=Zhao,%20B.&rft.date=2018-12&rft.volume=123&rft.issue=12&rft.spage=3556&rft.epage=3569&rft.pages=3556-3569&rft.issn=2169-8953&rft.eissn=2169-8961&rft_id=info:doi/10.1029/2018JG004649&rft_dat=%3Cproquest_cross%3E2165845527%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2165845527&rft_id=info:pmid/&rfr_iscdi=true