Four simple axioms of dependence measures

Recently new methods for measuring and testing dependence have appeared in the literature. One way to evaluate and compare these measures with each other and with classical ones is to consider what are reasonable and natural axioms that should hold for any measure of dependence. We propose four natu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metrika 2019-01, Vol.82 (1), p.1-16
Hauptverfasser: Móri, Tamás F., Székely, Gábor J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16
container_issue 1
container_start_page 1
container_title Metrika
container_volume 82
creator Móri, Tamás F.
Székely, Gábor J.
description Recently new methods for measuring and testing dependence have appeared in the literature. One way to evaluate and compare these measures with each other and with classical ones is to consider what are reasonable and natural axioms that should hold for any measure of dependence. We propose four natural axioms for dependence measures and establish which axioms hold or fail to hold for several widely applied methods. All of the proposed axioms are satisfied by distance correlation. We prove that if a dependence measure is defined for all bounded nonconstant real valued random variables and is invariant with respect to all one-to-one measurable transformations of the real line, then the dependence measure cannot be weakly continuous. This implies that the classical maximal correlation cannot be continuous and thus its application is problematic. The recently introduced maximal information coefficient has the same disadvantage. The lack of weak continuity means that as the sample size increases the empirical values of a dependence measure do not necessarily converge to the population value.
doi_str_mv 10.1007/s00184-018-0670-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2165691439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2165691439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-26e25be637999760803e0f03c1ccdd39bea1bd28299fd2d47123b6ab93f46e353</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8FTx6ik5k2bY6yuKuw4EXBW2ibqXTZ_jHZgn57s1Tw5OXN5ffezDwhrhXcKYD8PgCoIpVRJOgcJJ2IhUopkwb1-6lYAKCWiig7Fxch7CKda8SFuF0Pk09C2417TsqvduhCMjSJ45F7x33NScdlmDyHS3HWlPvAV79zKd7Wj6-rJ7l92TyvHrayJoMHiZoxq1hTbozJNRRADA1QreraOTIVl6pyWKAxjUOX5gqp0mVlqEk1U0ZLcTPnjn74nDgc7C6e2MeVFpXOtIlvmUipmar9EILnxo6-7Ur_bRXYYyN2bsRGscdGLEUPzp4Q2f6D_V_y_6YfgFBhsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2165691439</pqid></control><display><type>article</type><title>Four simple axioms of dependence measures</title><source>SpringerLink Journals - AutoHoldings</source><creator>Móri, Tamás F. ; Székely, Gábor J.</creator><creatorcontrib>Móri, Tamás F. ; Székely, Gábor J.</creatorcontrib><description>Recently new methods for measuring and testing dependence have appeared in the literature. One way to evaluate and compare these measures with each other and with classical ones is to consider what are reasonable and natural axioms that should hold for any measure of dependence. We propose four natural axioms for dependence measures and establish which axioms hold or fail to hold for several widely applied methods. All of the proposed axioms are satisfied by distance correlation. We prove that if a dependence measure is defined for all bounded nonconstant real valued random variables and is invariant with respect to all one-to-one measurable transformations of the real line, then the dependence measure cannot be weakly continuous. This implies that the classical maximal correlation cannot be continuous and thus its application is problematic. The recently introduced maximal information coefficient has the same disadvantage. The lack of weak continuity means that as the sample size increases the empirical values of a dependence measure do not necessarily converge to the population value.</description><identifier>ISSN: 0026-1335</identifier><identifier>EISSN: 1435-926X</identifier><identifier>DOI: 10.1007/s00184-018-0670-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Axioms ; Dependence ; Economic Theory/Quantitative Economics/Mathematical Methods ; Mathematics and Statistics ; Measurement methods ; Probability Theory and Stochastic Processes ; Random variables ; Real variables ; Statistics</subject><ispartof>Metrika, 2019-01, Vol.82 (1), p.1-16</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-26e25be637999760803e0f03c1ccdd39bea1bd28299fd2d47123b6ab93f46e353</citedby><cites>FETCH-LOGICAL-c392t-26e25be637999760803e0f03c1ccdd39bea1bd28299fd2d47123b6ab93f46e353</cites><orcidid>0000-0002-9328-7471</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00184-018-0670-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00184-018-0670-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Móri, Tamás F.</creatorcontrib><creatorcontrib>Székely, Gábor J.</creatorcontrib><title>Four simple axioms of dependence measures</title><title>Metrika</title><addtitle>Metrika</addtitle><description>Recently new methods for measuring and testing dependence have appeared in the literature. One way to evaluate and compare these measures with each other and with classical ones is to consider what are reasonable and natural axioms that should hold for any measure of dependence. We propose four natural axioms for dependence measures and establish which axioms hold or fail to hold for several widely applied methods. All of the proposed axioms are satisfied by distance correlation. We prove that if a dependence measure is defined for all bounded nonconstant real valued random variables and is invariant with respect to all one-to-one measurable transformations of the real line, then the dependence measure cannot be weakly continuous. This implies that the classical maximal correlation cannot be continuous and thus its application is problematic. The recently introduced maximal information coefficient has the same disadvantage. The lack of weak continuity means that as the sample size increases the empirical values of a dependence measure do not necessarily converge to the population value.</description><subject>Axioms</subject><subject>Dependence</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Mathematics and Statistics</subject><subject>Measurement methods</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Random variables</subject><subject>Real variables</subject><subject>Statistics</subject><issn>0026-1335</issn><issn>1435-926X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK5-AG8FTx6ik5k2bY6yuKuw4EXBW2ibqXTZ_jHZgn57s1Tw5OXN5ffezDwhrhXcKYD8PgCoIpVRJOgcJJ2IhUopkwb1-6lYAKCWiig7Fxch7CKda8SFuF0Pk09C2417TsqvduhCMjSJ45F7x33NScdlmDyHS3HWlPvAV79zKd7Wj6-rJ7l92TyvHrayJoMHiZoxq1hTbozJNRRADA1QreraOTIVl6pyWKAxjUOX5gqp0mVlqEk1U0ZLcTPnjn74nDgc7C6e2MeVFpXOtIlvmUipmar9EILnxo6-7Ur_bRXYYyN2bsRGscdGLEUPzp4Q2f6D_V_y_6YfgFBhsg</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Móri, Tamás F.</creator><creator>Székely, Gábor J.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9328-7471</orcidid></search><sort><creationdate>20190101</creationdate><title>Four simple axioms of dependence measures</title><author>Móri, Tamás F. ; Székely, Gábor J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-26e25be637999760803e0f03c1ccdd39bea1bd28299fd2d47123b6ab93f46e353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Axioms</topic><topic>Dependence</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Mathematics and Statistics</topic><topic>Measurement methods</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Random variables</topic><topic>Real variables</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Móri, Tamás F.</creatorcontrib><creatorcontrib>Székely, Gábor J.</creatorcontrib><collection>CrossRef</collection><jtitle>Metrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Móri, Tamás F.</au><au>Székely, Gábor J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Four simple axioms of dependence measures</atitle><jtitle>Metrika</jtitle><stitle>Metrika</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>82</volume><issue>1</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>0026-1335</issn><eissn>1435-926X</eissn><abstract>Recently new methods for measuring and testing dependence have appeared in the literature. One way to evaluate and compare these measures with each other and with classical ones is to consider what are reasonable and natural axioms that should hold for any measure of dependence. We propose four natural axioms for dependence measures and establish which axioms hold or fail to hold for several widely applied methods. All of the proposed axioms are satisfied by distance correlation. We prove that if a dependence measure is defined for all bounded nonconstant real valued random variables and is invariant with respect to all one-to-one measurable transformations of the real line, then the dependence measure cannot be weakly continuous. This implies that the classical maximal correlation cannot be continuous and thus its application is problematic. The recently introduced maximal information coefficient has the same disadvantage. The lack of weak continuity means that as the sample size increases the empirical values of a dependence measure do not necessarily converge to the population value.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00184-018-0670-3</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9328-7471</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0026-1335
ispartof Metrika, 2019-01, Vol.82 (1), p.1-16
issn 0026-1335
1435-926X
language eng
recordid cdi_proquest_journals_2165691439
source SpringerLink Journals - AutoHoldings
subjects Axioms
Dependence
Economic Theory/Quantitative Economics/Mathematical Methods
Mathematics and Statistics
Measurement methods
Probability Theory and Stochastic Processes
Random variables
Real variables
Statistics
title Four simple axioms of dependence measures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A27%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Four%20simple%20axioms%20of%20dependence%20measures&rft.jtitle=Metrika&rft.au=M%C3%B3ri,%20Tam%C3%A1s%20F.&rft.date=2019-01-01&rft.volume=82&rft.issue=1&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=0026-1335&rft.eissn=1435-926X&rft_id=info:doi/10.1007/s00184-018-0670-3&rft_dat=%3Cproquest_cross%3E2165691439%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2165691439&rft_id=info:pmid/&rfr_iscdi=true