Four simple axioms of dependence measures
Recently new methods for measuring and testing dependence have appeared in the literature. One way to evaluate and compare these measures with each other and with classical ones is to consider what are reasonable and natural axioms that should hold for any measure of dependence. We propose four natu...
Gespeichert in:
Veröffentlicht in: | Metrika 2019-01, Vol.82 (1), p.1-16 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Metrika |
container_volume | 82 |
creator | Móri, Tamás F. Székely, Gábor J. |
description | Recently new methods for measuring and testing dependence have appeared in the literature. One way to evaluate and compare these measures with each other and with classical ones is to consider what are reasonable and natural axioms that should hold for any measure of dependence. We propose four natural axioms for dependence measures and establish which axioms hold or fail to hold for several widely applied methods. All of the proposed axioms are satisfied by distance correlation. We prove that if a dependence measure is defined for all bounded nonconstant real valued random variables and is invariant with respect to all one-to-one measurable transformations of the real line, then the dependence measure cannot be weakly continuous. This implies that the classical maximal correlation cannot be continuous and thus its application is problematic. The recently introduced maximal information coefficient has the same disadvantage. The lack of weak continuity means that as the sample size increases the empirical values of a dependence measure do not necessarily converge to the population value. |
doi_str_mv | 10.1007/s00184-018-0670-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2165691439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2165691439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-26e25be637999760803e0f03c1ccdd39bea1bd28299fd2d47123b6ab93f46e353</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8FTx6ik5k2bY6yuKuw4EXBW2ibqXTZ_jHZgn57s1Tw5OXN5ffezDwhrhXcKYD8PgCoIpVRJOgcJJ2IhUopkwb1-6lYAKCWiig7Fxch7CKda8SFuF0Pk09C2417TsqvduhCMjSJ45F7x33NScdlmDyHS3HWlPvAV79zKd7Wj6-rJ7l92TyvHrayJoMHiZoxq1hTbozJNRRADA1QreraOTIVl6pyWKAxjUOX5gqp0mVlqEk1U0ZLcTPnjn74nDgc7C6e2MeVFpXOtIlvmUipmar9EILnxo6-7Ur_bRXYYyN2bsRGscdGLEUPzp4Q2f6D_V_y_6YfgFBhsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2165691439</pqid></control><display><type>article</type><title>Four simple axioms of dependence measures</title><source>SpringerLink Journals - AutoHoldings</source><creator>Móri, Tamás F. ; Székely, Gábor J.</creator><creatorcontrib>Móri, Tamás F. ; Székely, Gábor J.</creatorcontrib><description>Recently new methods for measuring and testing dependence have appeared in the literature. One way to evaluate and compare these measures with each other and with classical ones is to consider what are reasonable and natural axioms that should hold for any measure of dependence. We propose four natural axioms for dependence measures and establish which axioms hold or fail to hold for several widely applied methods. All of the proposed axioms are satisfied by distance correlation. We prove that if a dependence measure is defined for all bounded nonconstant real valued random variables and is invariant with respect to all one-to-one measurable transformations of the real line, then the dependence measure cannot be weakly continuous. This implies that the classical maximal correlation cannot be continuous and thus its application is problematic. The recently introduced maximal information coefficient has the same disadvantage. The lack of weak continuity means that as the sample size increases the empirical values of a dependence measure do not necessarily converge to the population value.</description><identifier>ISSN: 0026-1335</identifier><identifier>EISSN: 1435-926X</identifier><identifier>DOI: 10.1007/s00184-018-0670-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Axioms ; Dependence ; Economic Theory/Quantitative Economics/Mathematical Methods ; Mathematics and Statistics ; Measurement methods ; Probability Theory and Stochastic Processes ; Random variables ; Real variables ; Statistics</subject><ispartof>Metrika, 2019-01, Vol.82 (1), p.1-16</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-26e25be637999760803e0f03c1ccdd39bea1bd28299fd2d47123b6ab93f46e353</citedby><cites>FETCH-LOGICAL-c392t-26e25be637999760803e0f03c1ccdd39bea1bd28299fd2d47123b6ab93f46e353</cites><orcidid>0000-0002-9328-7471</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00184-018-0670-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00184-018-0670-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Móri, Tamás F.</creatorcontrib><creatorcontrib>Székely, Gábor J.</creatorcontrib><title>Four simple axioms of dependence measures</title><title>Metrika</title><addtitle>Metrika</addtitle><description>Recently new methods for measuring and testing dependence have appeared in the literature. One way to evaluate and compare these measures with each other and with classical ones is to consider what are reasonable and natural axioms that should hold for any measure of dependence. We propose four natural axioms for dependence measures and establish which axioms hold or fail to hold for several widely applied methods. All of the proposed axioms are satisfied by distance correlation. We prove that if a dependence measure is defined for all bounded nonconstant real valued random variables and is invariant with respect to all one-to-one measurable transformations of the real line, then the dependence measure cannot be weakly continuous. This implies that the classical maximal correlation cannot be continuous and thus its application is problematic. The recently introduced maximal information coefficient has the same disadvantage. The lack of weak continuity means that as the sample size increases the empirical values of a dependence measure do not necessarily converge to the population value.</description><subject>Axioms</subject><subject>Dependence</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Mathematics and Statistics</subject><subject>Measurement methods</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Random variables</subject><subject>Real variables</subject><subject>Statistics</subject><issn>0026-1335</issn><issn>1435-926X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK5-AG8FTx6ik5k2bY6yuKuw4EXBW2ibqXTZ_jHZgn57s1Tw5OXN5ffezDwhrhXcKYD8PgCoIpVRJOgcJJ2IhUopkwb1-6lYAKCWiig7Fxch7CKda8SFuF0Pk09C2417TsqvduhCMjSJ45F7x33NScdlmDyHS3HWlPvAV79zKd7Wj6-rJ7l92TyvHrayJoMHiZoxq1hTbozJNRRADA1QreraOTIVl6pyWKAxjUOX5gqp0mVlqEk1U0ZLcTPnjn74nDgc7C6e2MeVFpXOtIlvmUipmar9EILnxo6-7Ur_bRXYYyN2bsRGscdGLEUPzp4Q2f6D_V_y_6YfgFBhsg</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Móri, Tamás F.</creator><creator>Székely, Gábor J.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9328-7471</orcidid></search><sort><creationdate>20190101</creationdate><title>Four simple axioms of dependence measures</title><author>Móri, Tamás F. ; Székely, Gábor J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-26e25be637999760803e0f03c1ccdd39bea1bd28299fd2d47123b6ab93f46e353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Axioms</topic><topic>Dependence</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Mathematics and Statistics</topic><topic>Measurement methods</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Random variables</topic><topic>Real variables</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Móri, Tamás F.</creatorcontrib><creatorcontrib>Székely, Gábor J.</creatorcontrib><collection>CrossRef</collection><jtitle>Metrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Móri, Tamás F.</au><au>Székely, Gábor J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Four simple axioms of dependence measures</atitle><jtitle>Metrika</jtitle><stitle>Metrika</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>82</volume><issue>1</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>0026-1335</issn><eissn>1435-926X</eissn><abstract>Recently new methods for measuring and testing dependence have appeared in the literature. One way to evaluate and compare these measures with each other and with classical ones is to consider what are reasonable and natural axioms that should hold for any measure of dependence. We propose four natural axioms for dependence measures and establish which axioms hold or fail to hold for several widely applied methods. All of the proposed axioms are satisfied by distance correlation. We prove that if a dependence measure is defined for all bounded nonconstant real valued random variables and is invariant with respect to all one-to-one measurable transformations of the real line, then the dependence measure cannot be weakly continuous. This implies that the classical maximal correlation cannot be continuous and thus its application is problematic. The recently introduced maximal information coefficient has the same disadvantage. The lack of weak continuity means that as the sample size increases the empirical values of a dependence measure do not necessarily converge to the population value.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00184-018-0670-3</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9328-7471</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-1335 |
ispartof | Metrika, 2019-01, Vol.82 (1), p.1-16 |
issn | 0026-1335 1435-926X |
language | eng |
recordid | cdi_proquest_journals_2165691439 |
source | SpringerLink Journals - AutoHoldings |
subjects | Axioms Dependence Economic Theory/Quantitative Economics/Mathematical Methods Mathematics and Statistics Measurement methods Probability Theory and Stochastic Processes Random variables Real variables Statistics |
title | Four simple axioms of dependence measures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A27%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Four%20simple%20axioms%20of%20dependence%20measures&rft.jtitle=Metrika&rft.au=M%C3%B3ri,%20Tam%C3%A1s%20F.&rft.date=2019-01-01&rft.volume=82&rft.issue=1&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=0026-1335&rft.eissn=1435-926X&rft_id=info:doi/10.1007/s00184-018-0670-3&rft_dat=%3Cproquest_cross%3E2165691439%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2165691439&rft_id=info:pmid/&rfr_iscdi=true |