Determination of Molybdenum Species Evolution during Non‐Oxidative Dehydroaromatization of Methane and its Implications for Catalytic Performance

Mo/H‐ZSM‐5 has been studied using a combination of operando X‐ray absorption spectroscopy and High Resolution Powder Diffraction in order to study the evolution of Mo species and their location within the zeolite pores. The results indicate that after calcination the majority of the species present...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemCatChem 2019-01, Vol.11 (1), p.473-480
Hauptverfasser: Agote‐Arán, Miren, Kroner, Anna B., Islam, Husn U., Sławiński, Wojciech A., Wragg, David S., Lezcano‐González, Inés, Beale, Andrew M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 480
container_issue 1
container_start_page 473
container_title ChemCatChem
container_volume 11
creator Agote‐Arán, Miren
Kroner, Anna B.
Islam, Husn U.
Sławiński, Wojciech A.
Wragg, David S.
Lezcano‐González, Inés
Beale, Andrew M.
description Mo/H‐ZSM‐5 has been studied using a combination of operando X‐ray absorption spectroscopy and High Resolution Powder Diffraction in order to study the evolution of Mo species and their location within the zeolite pores. The results indicate that after calcination the majority of the species present are isolated Mo‐oxo species, attached to the zeolite framework at the straight channels. During reaction, Mo is first partially carburized to intermediate MoCxOy species. At longer reaction times Mo fully carburizes detaching from the zeolite and aggregates forming initial Mo1.6C3 clusters; this is coincident with maximum benzene production. The Mo1.6C3 clusters are then observed to grow, predominantly on the outer zeolite surface and this appears to be the primary cause of catalyst deactivation. The deactivation is not only due to a decrease in the amount of active Mo surface but also due to a loss in shape‐selectivity which leads to an increased carbon deposition at the outer shell of the zeolite crystals and eventually to pore blockage. Mission Operando: Operando XAS and HRPD/difference Fourier mapping enable the determination of the structure and location of evolving Mo species on H‐ZSM‐5 during methane dehydroaromatization, demonstrating their influence on product distribution and defining MoxCy as the active species. The instability and migration of these active species to the zeolite outer surface is a major cause of catalyst deactivation.
doi_str_mv 10.1002/cctc.201801299
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2165684275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2165684275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4239-d1c2bb1c8a27c394fc60b3ea1c11c50fc3adcacb01b187ad51776f2c6b5a69133</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhCMEEqVw5WyJc4vtND8-opSfSoUiUc6Rs3Goq8QOtlMIJx4BiTfkSUhb1B457WpnvllpPO-c4CHBmF4COBhSTGJMKGMHXo_EYTTwY8YOd3uMj70Ta5cYh8yPgp73PRZOmEoq7qRWSBfoXpdtlgvVVOipFiCFRdcrXTYbPW-MVC_oQaufz6_Zu8w7bCXQWCza3GhudNUdPvZZwi24EoirHEln0aSqSwkb2aJCG5Rwx8vWSUCPwnSHiisQp95RwUsrzv5m33u-uZ4nd4Pp7HaSXE0HMKI-G-QEaJYRiDmNwGejAkKc-YITIAQCXIDPc-CQYZKROOJ5QKIoLCiEWcBDRny_711sc2ujXxthXbrUjVHdy5SSMAjjEY2CzjXcusBoa40o0trIips2JThdF5-ui093xXcA2wJvshTtP-40SebJnv0F2deM2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2165684275</pqid></control><display><type>article</type><title>Determination of Molybdenum Species Evolution during Non‐Oxidative Dehydroaromatization of Methane and its Implications for Catalytic Performance</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Agote‐Arán, Miren ; Kroner, Anna B. ; Islam, Husn U. ; Sławiński, Wojciech A. ; Wragg, David S. ; Lezcano‐González, Inés ; Beale, Andrew M.</creator><creatorcontrib>Agote‐Arán, Miren ; Kroner, Anna B. ; Islam, Husn U. ; Sławiński, Wojciech A. ; Wragg, David S. ; Lezcano‐González, Inés ; Beale, Andrew M.</creatorcontrib><description>Mo/H‐ZSM‐5 has been studied using a combination of operando X‐ray absorption spectroscopy and High Resolution Powder Diffraction in order to study the evolution of Mo species and their location within the zeolite pores. The results indicate that after calcination the majority of the species present are isolated Mo‐oxo species, attached to the zeolite framework at the straight channels. During reaction, Mo is first partially carburized to intermediate MoCxOy species. At longer reaction times Mo fully carburizes detaching from the zeolite and aggregates forming initial Mo1.6C3 clusters; this is coincident with maximum benzene production. The Mo1.6C3 clusters are then observed to grow, predominantly on the outer zeolite surface and this appears to be the primary cause of catalyst deactivation. The deactivation is not only due to a decrease in the amount of active Mo surface but also due to a loss in shape‐selectivity which leads to an increased carbon deposition at the outer shell of the zeolite crystals and eventually to pore blockage. Mission Operando: Operando XAS and HRPD/difference Fourier mapping enable the determination of the structure and location of evolving Mo species on H‐ZSM‐5 during methane dehydroaromatization, demonstrating their influence on product distribution and defining MoxCy as the active species. The instability and migration of these active species to the zeolite outer surface is a major cause of catalyst deactivation.</description><identifier>ISSN: 1867-3880</identifier><identifier>EISSN: 1867-3899</identifier><identifier>DOI: 10.1002/cctc.201801299</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Benzene ; Biological evolution ; Carburizing ; Catalysis ; Clusters ; Deactivation ; HRPD ; MDA ; Mo-ZSM-5 ; Molybdenum ; operando ; Selectivity ; Straight channels ; XAFS ; Zeolites</subject><ispartof>ChemCatChem, 2019-01, Vol.11 (1), p.473-480</ispartof><rights>2018 The Authors. Published by Wiley-VCH Verlag GmbH &amp; Co. KGaA.</rights><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4239-d1c2bb1c8a27c394fc60b3ea1c11c50fc3adcacb01b187ad51776f2c6b5a69133</citedby><cites>FETCH-LOGICAL-c4239-d1c2bb1c8a27c394fc60b3ea1c11c50fc3adcacb01b187ad51776f2c6b5a69133</cites><orcidid>0000-0002-0923-1433</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcctc.201801299$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcctc.201801299$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Agote‐Arán, Miren</creatorcontrib><creatorcontrib>Kroner, Anna B.</creatorcontrib><creatorcontrib>Islam, Husn U.</creatorcontrib><creatorcontrib>Sławiński, Wojciech A.</creatorcontrib><creatorcontrib>Wragg, David S.</creatorcontrib><creatorcontrib>Lezcano‐González, Inés</creatorcontrib><creatorcontrib>Beale, Andrew M.</creatorcontrib><title>Determination of Molybdenum Species Evolution during Non‐Oxidative Dehydroaromatization of Methane and its Implications for Catalytic Performance</title><title>ChemCatChem</title><description>Mo/H‐ZSM‐5 has been studied using a combination of operando X‐ray absorption spectroscopy and High Resolution Powder Diffraction in order to study the evolution of Mo species and their location within the zeolite pores. The results indicate that after calcination the majority of the species present are isolated Mo‐oxo species, attached to the zeolite framework at the straight channels. During reaction, Mo is first partially carburized to intermediate MoCxOy species. At longer reaction times Mo fully carburizes detaching from the zeolite and aggregates forming initial Mo1.6C3 clusters; this is coincident with maximum benzene production. The Mo1.6C3 clusters are then observed to grow, predominantly on the outer zeolite surface and this appears to be the primary cause of catalyst deactivation. The deactivation is not only due to a decrease in the amount of active Mo surface but also due to a loss in shape‐selectivity which leads to an increased carbon deposition at the outer shell of the zeolite crystals and eventually to pore blockage. Mission Operando: Operando XAS and HRPD/difference Fourier mapping enable the determination of the structure and location of evolving Mo species on H‐ZSM‐5 during methane dehydroaromatization, demonstrating their influence on product distribution and defining MoxCy as the active species. The instability and migration of these active species to the zeolite outer surface is a major cause of catalyst deactivation.</description><subject>Benzene</subject><subject>Biological evolution</subject><subject>Carburizing</subject><subject>Catalysis</subject><subject>Clusters</subject><subject>Deactivation</subject><subject>HRPD</subject><subject>MDA</subject><subject>Mo-ZSM-5</subject><subject>Molybdenum</subject><subject>operando</subject><subject>Selectivity</subject><subject>Straight channels</subject><subject>XAFS</subject><subject>Zeolites</subject><issn>1867-3880</issn><issn>1867-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkM1OwzAQhCMEEqVw5WyJc4vtND8-opSfSoUiUc6Rs3Goq8QOtlMIJx4BiTfkSUhb1B457WpnvllpPO-c4CHBmF4COBhSTGJMKGMHXo_EYTTwY8YOd3uMj70Ta5cYh8yPgp73PRZOmEoq7qRWSBfoXpdtlgvVVOipFiCFRdcrXTYbPW-MVC_oQaufz6_Zu8w7bCXQWCza3GhudNUdPvZZwi24EoirHEln0aSqSwkb2aJCG5Rwx8vWSUCPwnSHiisQp95RwUsrzv5m33u-uZ4nd4Pp7HaSXE0HMKI-G-QEaJYRiDmNwGejAkKc-YITIAQCXIDPc-CQYZKROOJ5QKIoLCiEWcBDRny_711sc2ujXxthXbrUjVHdy5SSMAjjEY2CzjXcusBoa40o0trIips2JThdF5-ui093xXcA2wJvshTtP-40SebJnv0F2deM2g</recordid><startdate>20190109</startdate><enddate>20190109</enddate><creator>Agote‐Arán, Miren</creator><creator>Kroner, Anna B.</creator><creator>Islam, Husn U.</creator><creator>Sławiński, Wojciech A.</creator><creator>Wragg, David S.</creator><creator>Lezcano‐González, Inés</creator><creator>Beale, Andrew M.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0923-1433</orcidid></search><sort><creationdate>20190109</creationdate><title>Determination of Molybdenum Species Evolution during Non‐Oxidative Dehydroaromatization of Methane and its Implications for Catalytic Performance</title><author>Agote‐Arán, Miren ; Kroner, Anna B. ; Islam, Husn U. ; Sławiński, Wojciech A. ; Wragg, David S. ; Lezcano‐González, Inés ; Beale, Andrew M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4239-d1c2bb1c8a27c394fc60b3ea1c11c50fc3adcacb01b187ad51776f2c6b5a69133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Benzene</topic><topic>Biological evolution</topic><topic>Carburizing</topic><topic>Catalysis</topic><topic>Clusters</topic><topic>Deactivation</topic><topic>HRPD</topic><topic>MDA</topic><topic>Mo-ZSM-5</topic><topic>Molybdenum</topic><topic>operando</topic><topic>Selectivity</topic><topic>Straight channels</topic><topic>XAFS</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agote‐Arán, Miren</creatorcontrib><creatorcontrib>Kroner, Anna B.</creatorcontrib><creatorcontrib>Islam, Husn U.</creatorcontrib><creatorcontrib>Sławiński, Wojciech A.</creatorcontrib><creatorcontrib>Wragg, David S.</creatorcontrib><creatorcontrib>Lezcano‐González, Inés</creatorcontrib><creatorcontrib>Beale, Andrew M.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><jtitle>ChemCatChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agote‐Arán, Miren</au><au>Kroner, Anna B.</au><au>Islam, Husn U.</au><au>Sławiński, Wojciech A.</au><au>Wragg, David S.</au><au>Lezcano‐González, Inés</au><au>Beale, Andrew M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of Molybdenum Species Evolution during Non‐Oxidative Dehydroaromatization of Methane and its Implications for Catalytic Performance</atitle><jtitle>ChemCatChem</jtitle><date>2019-01-09</date><risdate>2019</risdate><volume>11</volume><issue>1</issue><spage>473</spage><epage>480</epage><pages>473-480</pages><issn>1867-3880</issn><eissn>1867-3899</eissn><abstract>Mo/H‐ZSM‐5 has been studied using a combination of operando X‐ray absorption spectroscopy and High Resolution Powder Diffraction in order to study the evolution of Mo species and their location within the zeolite pores. The results indicate that after calcination the majority of the species present are isolated Mo‐oxo species, attached to the zeolite framework at the straight channels. During reaction, Mo is first partially carburized to intermediate MoCxOy species. At longer reaction times Mo fully carburizes detaching from the zeolite and aggregates forming initial Mo1.6C3 clusters; this is coincident with maximum benzene production. The Mo1.6C3 clusters are then observed to grow, predominantly on the outer zeolite surface and this appears to be the primary cause of catalyst deactivation. The deactivation is not only due to a decrease in the amount of active Mo surface but also due to a loss in shape‐selectivity which leads to an increased carbon deposition at the outer shell of the zeolite crystals and eventually to pore blockage. Mission Operando: Operando XAS and HRPD/difference Fourier mapping enable the determination of the structure and location of evolving Mo species on H‐ZSM‐5 during methane dehydroaromatization, demonstrating their influence on product distribution and defining MoxCy as the active species. The instability and migration of these active species to the zeolite outer surface is a major cause of catalyst deactivation.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cctc.201801299</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0923-1433</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1867-3880
ispartof ChemCatChem, 2019-01, Vol.11 (1), p.473-480
issn 1867-3880
1867-3899
language eng
recordid cdi_proquest_journals_2165684275
source Wiley Online Library Journals Frontfile Complete
subjects Benzene
Biological evolution
Carburizing
Catalysis
Clusters
Deactivation
HRPD
MDA
Mo-ZSM-5
Molybdenum
operando
Selectivity
Straight channels
XAFS
Zeolites
title Determination of Molybdenum Species Evolution during Non‐Oxidative Dehydroaromatization of Methane and its Implications for Catalytic Performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A28%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20Molybdenum%20Species%20Evolution%20during%20Non%E2%80%90Oxidative%20Dehydroaromatization%20of%20Methane%20and%20its%20Implications%20for%20Catalytic%20Performance&rft.jtitle=ChemCatChem&rft.au=Agote%E2%80%90Ar%C3%A1n,%20Miren&rft.date=2019-01-09&rft.volume=11&rft.issue=1&rft.spage=473&rft.epage=480&rft.pages=473-480&rft.issn=1867-3880&rft.eissn=1867-3899&rft_id=info:doi/10.1002/cctc.201801299&rft_dat=%3Cproquest_cross%3E2165684275%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2165684275&rft_id=info:pmid/&rfr_iscdi=true