Hierarchical 3D electrodes for electrochemical energy storage

The discovery and development of electrode materials promise superior energy or power density. However, good performance is typically achieved only in ultrathin electrodes with low mass loadings (≤1 mg cm −2 ) and is difficult to realize in commercial electrodes with higher mass loadings (>10 mg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature reviews. Materials 2019-01, Vol.4 (1), p.45-60
Hauptverfasser: Sun, Hongtao, Zhu, Jian, Baumann, Daniel, Peng, Lele, Xu, Yuxi, Shakir, Imran, Huang, Yu, Duan, Xiangfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 60
container_issue 1
container_start_page 45
container_title Nature reviews. Materials
container_volume 4
creator Sun, Hongtao
Zhu, Jian
Baumann, Daniel
Peng, Lele
Xu, Yuxi
Shakir, Imran
Huang, Yu
Duan, Xiangfeng
description The discovery and development of electrode materials promise superior energy or power density. However, good performance is typically achieved only in ultrathin electrodes with low mass loadings (≤1 mg cm −2 ) and is difficult to realize in commercial electrodes with higher mass loadings (>10 mg cm −2 ). To realize the full potential of these electrode materials, new electrode architectures are required that can allow more efficient charge transport beyond the limits of traditional electrodes. In this Review, we summarize the design and synthesis of 3D electrodes to address charge transport limitations in thick electrodes. Specifically, we discuss the role of charge transport in electrochemical systems and focus on the design of 3D porous structures with a continuous conductive network for electron transport and a fully interconnected hierarchical porosity for ion transport. We also discuss the application of 3D porous architectures as conductive scaffolds for various electrode materials to enable composite electrodes with an unprecedented combination of energy and power densities and then conclude with a perspective on future opportunities and challenges. 3D electrodes with interconnected and interpenetrating pathways enable efficient electron and ion transport. In this Review, the design and synthesis of such 3D electrodes are discussed, along with their ability to address charge transport limitations at high areal mass loading and to enable composite electrodes with an unprecedented combination of energy and power densities in electrochemical energy storage devices.
doi_str_mv 10.1038/s41578-018-0069-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2165652918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2165652918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-883d9ea87338afba2a927539b759194c8df3ee0ca34f41bc8d59d735e008350d3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWGo_gLcFz6uTzKabHDxI1VYoeNFzyGZn-4e2WyfbQ7-9qavoxcMw8-C9N_AT4lrCrQQ0d7GQujQ5yDQwtrk9EwMF2uSmwPL8z30pRjGuAUBaLKxRA3E_WxF7DstV8JsMHzPaUOi4rSlmTcs_Mixp--WgHfHimMWuZb-gK3HR-E2k0fceivfnp7fJLJ-_Tl8mD_M8oFFdbgzWlrwpEY1vKq-8VaVGW5XaSlsEUzdIBMFj0RSySlrbukRNAAY11DgUN33vntuPA8XOrdsD79JLp-RYj7Wy0iSX7F2B2xiZGrfn1dbz0UlwJ1CuB-USKHcC5WzKqD4Tk3e3IP5t_j_0CULtah4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2165652918</pqid></control><display><type>article</type><title>Hierarchical 3D electrodes for electrochemical energy storage</title><source>SpringerLink Journals</source><creator>Sun, Hongtao ; Zhu, Jian ; Baumann, Daniel ; Peng, Lele ; Xu, Yuxi ; Shakir, Imran ; Huang, Yu ; Duan, Xiangfeng</creator><creatorcontrib>Sun, Hongtao ; Zhu, Jian ; Baumann, Daniel ; Peng, Lele ; Xu, Yuxi ; Shakir, Imran ; Huang, Yu ; Duan, Xiangfeng</creatorcontrib><description>The discovery and development of electrode materials promise superior energy or power density. However, good performance is typically achieved only in ultrathin electrodes with low mass loadings (≤1 mg cm −2 ) and is difficult to realize in commercial electrodes with higher mass loadings (&gt;10 mg cm −2 ). To realize the full potential of these electrode materials, new electrode architectures are required that can allow more efficient charge transport beyond the limits of traditional electrodes. In this Review, we summarize the design and synthesis of 3D electrodes to address charge transport limitations in thick electrodes. Specifically, we discuss the role of charge transport in electrochemical systems and focus on the design of 3D porous structures with a continuous conductive network for electron transport and a fully interconnected hierarchical porosity for ion transport. We also discuss the application of 3D porous architectures as conductive scaffolds for various electrode materials to enable composite electrodes with an unprecedented combination of energy and power densities and then conclude with a perspective on future opportunities and challenges. 3D electrodes with interconnected and interpenetrating pathways enable efficient electron and ion transport. In this Review, the design and synthesis of such 3D electrodes are discussed, along with their ability to address charge transport limitations at high areal mass loading and to enable composite electrodes with an unprecedented combination of energy and power densities in electrochemical energy storage devices.</description><identifier>ISSN: 2058-8437</identifier><identifier>EISSN: 2058-8437</identifier><identifier>DOI: 10.1038/s41578-018-0069-9</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299 ; 639/301/299/891 ; 639/301/357/918 ; Biomaterials ; Charge transport ; Chemistry and Materials Science ; Condensed Matter Physics ; Electrode materials ; Electrodes ; Electron transport ; Energy storage ; Ion transport ; Ions ; Materials Science ; Nanotechnology ; Optical and Electronic Materials ; Porosity ; Review Article</subject><ispartof>Nature reviews. Materials, 2019-01, Vol.4 (1), p.45-60</ispartof><rights>Springer Nature Limited 2018</rights><rights>Copyright Nature Publishing Group Jan 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-883d9ea87338afba2a927539b759194c8df3ee0ca34f41bc8d59d735e008350d3</citedby><cites>FETCH-LOGICAL-c382t-883d9ea87338afba2a927539b759194c8df3ee0ca34f41bc8d59d735e008350d3</cites><orcidid>0000-0003-3259-6091 ; 0000-0002-4321-6288</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41578-018-0069-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41578-018-0069-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sun, Hongtao</creatorcontrib><creatorcontrib>Zhu, Jian</creatorcontrib><creatorcontrib>Baumann, Daniel</creatorcontrib><creatorcontrib>Peng, Lele</creatorcontrib><creatorcontrib>Xu, Yuxi</creatorcontrib><creatorcontrib>Shakir, Imran</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Duan, Xiangfeng</creatorcontrib><title>Hierarchical 3D electrodes for electrochemical energy storage</title><title>Nature reviews. Materials</title><addtitle>Nat Rev Mater</addtitle><description>The discovery and development of electrode materials promise superior energy or power density. However, good performance is typically achieved only in ultrathin electrodes with low mass loadings (≤1 mg cm −2 ) and is difficult to realize in commercial electrodes with higher mass loadings (&gt;10 mg cm −2 ). To realize the full potential of these electrode materials, new electrode architectures are required that can allow more efficient charge transport beyond the limits of traditional electrodes. In this Review, we summarize the design and synthesis of 3D electrodes to address charge transport limitations in thick electrodes. Specifically, we discuss the role of charge transport in electrochemical systems and focus on the design of 3D porous structures with a continuous conductive network for electron transport and a fully interconnected hierarchical porosity for ion transport. We also discuss the application of 3D porous architectures as conductive scaffolds for various electrode materials to enable composite electrodes with an unprecedented combination of energy and power densities and then conclude with a perspective on future opportunities and challenges. 3D electrodes with interconnected and interpenetrating pathways enable efficient electron and ion transport. In this Review, the design and synthesis of such 3D electrodes are discussed, along with their ability to address charge transport limitations at high areal mass loading and to enable composite electrodes with an unprecedented combination of energy and power densities in electrochemical energy storage devices.</description><subject>639/301/299</subject><subject>639/301/299/891</subject><subject>639/301/357/918</subject><subject>Biomaterials</subject><subject>Charge transport</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electron transport</subject><subject>Energy storage</subject><subject>Ion transport</subject><subject>Ions</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Porosity</subject><subject>Review Article</subject><issn>2058-8437</issn><issn>2058-8437</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE9LAzEQxYMoWGo_gLcFz6uTzKabHDxI1VYoeNFzyGZn-4e2WyfbQ7-9qavoxcMw8-C9N_AT4lrCrQQ0d7GQujQ5yDQwtrk9EwMF2uSmwPL8z30pRjGuAUBaLKxRA3E_WxF7DstV8JsMHzPaUOi4rSlmTcs_Mixp--WgHfHimMWuZb-gK3HR-E2k0fceivfnp7fJLJ-_Tl8mD_M8oFFdbgzWlrwpEY1vKq-8VaVGW5XaSlsEUzdIBMFj0RSySlrbukRNAAY11DgUN33vntuPA8XOrdsD79JLp-RYj7Wy0iSX7F2B2xiZGrfn1dbz0UlwJ1CuB-USKHcC5WzKqD4Tk3e3IP5t_j_0CULtah4</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Sun, Hongtao</creator><creator>Zhu, Jian</creator><creator>Baumann, Daniel</creator><creator>Peng, Lele</creator><creator>Xu, Yuxi</creator><creator>Shakir, Imran</creator><creator>Huang, Yu</creator><creator>Duan, Xiangfeng</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-3259-6091</orcidid><orcidid>https://orcid.org/0000-0002-4321-6288</orcidid></search><sort><creationdate>20190101</creationdate><title>Hierarchical 3D electrodes for electrochemical energy storage</title><author>Sun, Hongtao ; Zhu, Jian ; Baumann, Daniel ; Peng, Lele ; Xu, Yuxi ; Shakir, Imran ; Huang, Yu ; Duan, Xiangfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-883d9ea87338afba2a927539b759194c8df3ee0ca34f41bc8d59d735e008350d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/301/299</topic><topic>639/301/299/891</topic><topic>639/301/357/918</topic><topic>Biomaterials</topic><topic>Charge transport</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electron transport</topic><topic>Energy storage</topic><topic>Ion transport</topic><topic>Ions</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Porosity</topic><topic>Review Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Hongtao</creatorcontrib><creatorcontrib>Zhu, Jian</creatorcontrib><creatorcontrib>Baumann, Daniel</creatorcontrib><creatorcontrib>Peng, Lele</creatorcontrib><creatorcontrib>Xu, Yuxi</creatorcontrib><creatorcontrib>Shakir, Imran</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Duan, Xiangfeng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Nature reviews. Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Hongtao</au><au>Zhu, Jian</au><au>Baumann, Daniel</au><au>Peng, Lele</au><au>Xu, Yuxi</au><au>Shakir, Imran</au><au>Huang, Yu</au><au>Duan, Xiangfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical 3D electrodes for electrochemical energy storage</atitle><jtitle>Nature reviews. Materials</jtitle><stitle>Nat Rev Mater</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>4</volume><issue>1</issue><spage>45</spage><epage>60</epage><pages>45-60</pages><issn>2058-8437</issn><eissn>2058-8437</eissn><abstract>The discovery and development of electrode materials promise superior energy or power density. However, good performance is typically achieved only in ultrathin electrodes with low mass loadings (≤1 mg cm −2 ) and is difficult to realize in commercial electrodes with higher mass loadings (&gt;10 mg cm −2 ). To realize the full potential of these electrode materials, new electrode architectures are required that can allow more efficient charge transport beyond the limits of traditional electrodes. In this Review, we summarize the design and synthesis of 3D electrodes to address charge transport limitations in thick electrodes. Specifically, we discuss the role of charge transport in electrochemical systems and focus on the design of 3D porous structures with a continuous conductive network for electron transport and a fully interconnected hierarchical porosity for ion transport. We also discuss the application of 3D porous architectures as conductive scaffolds for various electrode materials to enable composite electrodes with an unprecedented combination of energy and power densities and then conclude with a perspective on future opportunities and challenges. 3D electrodes with interconnected and interpenetrating pathways enable efficient electron and ion transport. In this Review, the design and synthesis of such 3D electrodes are discussed, along with their ability to address charge transport limitations at high areal mass loading and to enable composite electrodes with an unprecedented combination of energy and power densities in electrochemical energy storage devices.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41578-018-0069-9</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3259-6091</orcidid><orcidid>https://orcid.org/0000-0002-4321-6288</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2058-8437
ispartof Nature reviews. Materials, 2019-01, Vol.4 (1), p.45-60
issn 2058-8437
2058-8437
language eng
recordid cdi_proquest_journals_2165652918
source SpringerLink Journals
subjects 639/301/299
639/301/299/891
639/301/357/918
Biomaterials
Charge transport
Chemistry and Materials Science
Condensed Matter Physics
Electrode materials
Electrodes
Electron transport
Energy storage
Ion transport
Ions
Materials Science
Nanotechnology
Optical and Electronic Materials
Porosity
Review Article
title Hierarchical 3D electrodes for electrochemical energy storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T07%3A23%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%203D%20electrodes%20for%20electrochemical%20energy%20storage&rft.jtitle=Nature%20reviews.%20Materials&rft.au=Sun,%20Hongtao&rft.date=2019-01-01&rft.volume=4&rft.issue=1&rft.spage=45&rft.epage=60&rft.pages=45-60&rft.issn=2058-8437&rft.eissn=2058-8437&rft_id=info:doi/10.1038/s41578-018-0069-9&rft_dat=%3Cproquest_cross%3E2165652918%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2165652918&rft_id=info:pmid/&rfr_iscdi=true