A Reverse Rogers–Shephard Inequality for Log-Concave Functions

We will prove a reverse Rogers–Shephard inequality for log-concave functions. In some particular cases, the method used for general log-concave functions can be slightly improved, allowing us to prove volume estimates for polars of ℓ p -diferences of convex bodies under the condition that their pola...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2019-01, Vol.29 (1), p.299-315
1. Verfasser: Alonso-Gutiérrez, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 315
container_issue 1
container_start_page 299
container_title The Journal of Geometric Analysis
container_volume 29
creator Alonso-Gutiérrez, David
description We will prove a reverse Rogers–Shephard inequality for log-concave functions. In some particular cases, the method used for general log-concave functions can be slightly improved, allowing us to prove volume estimates for polars of ℓ p -diferences of convex bodies under the condition that their polar bodies have opposite barycenters.
doi_str_mv 10.1007/s12220-018-9991-8
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2165145588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A707339781</galeid><sourcerecordid>A707339781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-c2b3e2c1dbc88a928b9922595936d8afe903be54e4903f519de20c4584735703</originalsourceid><addsrcrecordid>eNp1kM9KAzEQxhdRsFYfwNuC59T82ewmN0uxWigItQdvIZudbbe0SZvsFnrzHXxDn8SUFTzJHGYYvm--4Zck9wSPCMbFYyCUUowwEUhKSZC4SAaEc4kwph-XccYco1zS_Dq5CWGDcZazrBgkT-N0AUfwAdKFW8X-_fn1vob9WvsqnVk4dHrbtKe0dj6duxWaOGv0EdJpZ03bOBtuk6tabwPc_fZhspw-LyevaP72MpuM58gwzltkaMmAGlKVRggtqSilpJRLLlleCV2DxKwEnkEWh5oTWQHFJuMiKxgvMBsmD_3ZvXeHDkKrNq7zNiYqSnJOMs6FiKpRr1rpLajG1q712sSqYNcYZ6Fu4n5c4IIxWQgSDaQ3GO9C8FCrvW922p8UweoMVvVgVQSrzmDVOYT2nhC1NjL7e-V_0w9HGHoi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2165145588</pqid></control><display><type>article</type><title>A Reverse Rogers–Shephard Inequality for Log-Concave Functions</title><source>SpringerLink Journals</source><creator>Alonso-Gutiérrez, David</creator><creatorcontrib>Alonso-Gutiérrez, David</creatorcontrib><description>We will prove a reverse Rogers–Shephard inequality for log-concave functions. In some particular cases, the method used for general log-concave functions can be slightly improved, allowing us to prove volume estimates for polars of ℓ p -diferences of convex bodies under the condition that their polar bodies have opposite barycenters.</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-018-9991-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Convex and Discrete Geometry ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Equality ; Fourier Analysis ; Geometry ; Global Analysis and Analysis on Manifolds ; Mathematics ; Mathematics and Statistics</subject><ispartof>The Journal of Geometric Analysis, 2019-01, Vol.29 (1), p.299-315</ispartof><rights>Mathematica Josephina, Inc. 2018</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-c2b3e2c1dbc88a928b9922595936d8afe903be54e4903f519de20c4584735703</citedby><cites>FETCH-LOGICAL-c355t-c2b3e2c1dbc88a928b9922595936d8afe903be54e4903f519de20c4584735703</cites><orcidid>0000-0003-1256-3671</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12220-018-9991-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12220-018-9991-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Alonso-Gutiérrez, David</creatorcontrib><title>A Reverse Rogers–Shephard Inequality for Log-Concave Functions</title><title>The Journal of Geometric Analysis</title><addtitle>J Geom Anal</addtitle><description>We will prove a reverse Rogers–Shephard inequality for log-concave functions. In some particular cases, the method used for general log-concave functions can be slightly improved, allowing us to prove volume estimates for polars of ℓ p -diferences of convex bodies under the condition that their polar bodies have opposite barycenters.</description><subject>Abstract Harmonic Analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Equality</subject><subject>Fourier Analysis</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM9KAzEQxhdRsFYfwNuC59T82ewmN0uxWigItQdvIZudbbe0SZvsFnrzHXxDn8SUFTzJHGYYvm--4Zck9wSPCMbFYyCUUowwEUhKSZC4SAaEc4kwph-XccYco1zS_Dq5CWGDcZazrBgkT-N0AUfwAdKFW8X-_fn1vob9WvsqnVk4dHrbtKe0dj6duxWaOGv0EdJpZ03bOBtuk6tabwPc_fZhspw-LyevaP72MpuM58gwzltkaMmAGlKVRggtqSilpJRLLlleCV2DxKwEnkEWh5oTWQHFJuMiKxgvMBsmD_3ZvXeHDkKrNq7zNiYqSnJOMs6FiKpRr1rpLajG1q712sSqYNcYZ6Fu4n5c4IIxWQgSDaQ3GO9C8FCrvW922p8UweoMVvVgVQSrzmDVOYT2nhC1NjL7e-V_0w9HGHoi</recordid><startdate>20190115</startdate><enddate>20190115</enddate><creator>Alonso-Gutiérrez, David</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><orcidid>https://orcid.org/0000-0003-1256-3671</orcidid></search><sort><creationdate>20190115</creationdate><title>A Reverse Rogers–Shephard Inequality for Log-Concave Functions</title><author>Alonso-Gutiérrez, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-c2b3e2c1dbc88a928b9922595936d8afe903be54e4903f519de20c4584735703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Equality</topic><topic>Fourier Analysis</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alonso-Gutiérrez, David</creatorcontrib><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><jtitle>The Journal of Geometric Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alonso-Gutiérrez, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Reverse Rogers–Shephard Inequality for Log-Concave Functions</atitle><jtitle>The Journal of Geometric Analysis</jtitle><stitle>J Geom Anal</stitle><date>2019-01-15</date><risdate>2019</risdate><volume>29</volume><issue>1</issue><spage>299</spage><epage>315</epage><pages>299-315</pages><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>We will prove a reverse Rogers–Shephard inequality for log-concave functions. In some particular cases, the method used for general log-concave functions can be slightly improved, allowing us to prove volume estimates for polars of ℓ p -diferences of convex bodies under the condition that their polar bodies have opposite barycenters.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-018-9991-8</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1256-3671</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1050-6926
ispartof The Journal of Geometric Analysis, 2019-01, Vol.29 (1), p.299-315
issn 1050-6926
1559-002X
language eng
recordid cdi_proquest_journals_2165145588
source SpringerLink Journals
subjects Abstract Harmonic Analysis
Convex and Discrete Geometry
Differential Geometry
Dynamical Systems and Ergodic Theory
Equality
Fourier Analysis
Geometry
Global Analysis and Analysis on Manifolds
Mathematics
Mathematics and Statistics
title A Reverse Rogers–Shephard Inequality for Log-Concave Functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A24%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Reverse%20Rogers%E2%80%93Shephard%20Inequality%20for%20Log-Concave%20Functions&rft.jtitle=The%20Journal%20of%20Geometric%20Analysis&rft.au=Alonso-Guti%C3%A9rrez,%20David&rft.date=2019-01-15&rft.volume=29&rft.issue=1&rft.spage=299&rft.epage=315&rft.pages=299-315&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-018-9991-8&rft_dat=%3Cgale_proqu%3EA707339781%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2165145588&rft_id=info:pmid/&rft_galeid=A707339781&rfr_iscdi=true