A Reverse Rogers–Shephard Inequality for Log-Concave Functions
We will prove a reverse Rogers–Shephard inequality for log-concave functions. In some particular cases, the method used for general log-concave functions can be slightly improved, allowing us to prove volume estimates for polars of ℓ p -diferences of convex bodies under the condition that their pola...
Gespeichert in:
Veröffentlicht in: | The Journal of Geometric Analysis 2019-01, Vol.29 (1), p.299-315 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 315 |
---|---|
container_issue | 1 |
container_start_page | 299 |
container_title | The Journal of Geometric Analysis |
container_volume | 29 |
creator | Alonso-Gutiérrez, David |
description | We will prove a reverse Rogers–Shephard inequality for log-concave functions. In some particular cases, the method used for general log-concave functions can be slightly improved, allowing us to prove volume estimates for polars of
ℓ
p
-diferences of convex bodies under the condition that their polar bodies have opposite barycenters. |
doi_str_mv | 10.1007/s12220-018-9991-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2165145588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A707339781</galeid><sourcerecordid>A707339781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-c2b3e2c1dbc88a928b9922595936d8afe903be54e4903f519de20c4584735703</originalsourceid><addsrcrecordid>eNp1kM9KAzEQxhdRsFYfwNuC59T82ewmN0uxWigItQdvIZudbbe0SZvsFnrzHXxDn8SUFTzJHGYYvm--4Zck9wSPCMbFYyCUUowwEUhKSZC4SAaEc4kwph-XccYco1zS_Dq5CWGDcZazrBgkT-N0AUfwAdKFW8X-_fn1vob9WvsqnVk4dHrbtKe0dj6duxWaOGv0EdJpZ03bOBtuk6tabwPc_fZhspw-LyevaP72MpuM58gwzltkaMmAGlKVRggtqSilpJRLLlleCV2DxKwEnkEWh5oTWQHFJuMiKxgvMBsmD_3ZvXeHDkKrNq7zNiYqSnJOMs6FiKpRr1rpLajG1q712sSqYNcYZ6Fu4n5c4IIxWQgSDaQ3GO9C8FCrvW922p8UweoMVvVgVQSrzmDVOYT2nhC1NjL7e-V_0w9HGHoi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2165145588</pqid></control><display><type>article</type><title>A Reverse Rogers–Shephard Inequality for Log-Concave Functions</title><source>SpringerLink Journals</source><creator>Alonso-Gutiérrez, David</creator><creatorcontrib>Alonso-Gutiérrez, David</creatorcontrib><description>We will prove a reverse Rogers–Shephard inequality for log-concave functions. In some particular cases, the method used for general log-concave functions can be slightly improved, allowing us to prove volume estimates for polars of
ℓ
p
-diferences of convex bodies under the condition that their polar bodies have opposite barycenters.</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-018-9991-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Convex and Discrete Geometry ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Equality ; Fourier Analysis ; Geometry ; Global Analysis and Analysis on Manifolds ; Mathematics ; Mathematics and Statistics</subject><ispartof>The Journal of Geometric Analysis, 2019-01, Vol.29 (1), p.299-315</ispartof><rights>Mathematica Josephina, Inc. 2018</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Science & Business Media 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-c2b3e2c1dbc88a928b9922595936d8afe903be54e4903f519de20c4584735703</citedby><cites>FETCH-LOGICAL-c355t-c2b3e2c1dbc88a928b9922595936d8afe903be54e4903f519de20c4584735703</cites><orcidid>0000-0003-1256-3671</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12220-018-9991-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12220-018-9991-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Alonso-Gutiérrez, David</creatorcontrib><title>A Reverse Rogers–Shephard Inequality for Log-Concave Functions</title><title>The Journal of Geometric Analysis</title><addtitle>J Geom Anal</addtitle><description>We will prove a reverse Rogers–Shephard inequality for log-concave functions. In some particular cases, the method used for general log-concave functions can be slightly improved, allowing us to prove volume estimates for polars of
ℓ
p
-diferences of convex bodies under the condition that their polar bodies have opposite barycenters.</description><subject>Abstract Harmonic Analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Equality</subject><subject>Fourier Analysis</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM9KAzEQxhdRsFYfwNuC59T82ewmN0uxWigItQdvIZudbbe0SZvsFnrzHXxDn8SUFTzJHGYYvm--4Zck9wSPCMbFYyCUUowwEUhKSZC4SAaEc4kwph-XccYco1zS_Dq5CWGDcZazrBgkT-N0AUfwAdKFW8X-_fn1vob9WvsqnVk4dHrbtKe0dj6duxWaOGv0EdJpZ03bOBtuk6tabwPc_fZhspw-LyevaP72MpuM58gwzltkaMmAGlKVRggtqSilpJRLLlleCV2DxKwEnkEWh5oTWQHFJuMiKxgvMBsmD_3ZvXeHDkKrNq7zNiYqSnJOMs6FiKpRr1rpLajG1q712sSqYNcYZ6Fu4n5c4IIxWQgSDaQ3GO9C8FCrvW922p8UweoMVvVgVQSrzmDVOYT2nhC1NjL7e-V_0w9HGHoi</recordid><startdate>20190115</startdate><enddate>20190115</enddate><creator>Alonso-Gutiérrez, David</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><orcidid>https://orcid.org/0000-0003-1256-3671</orcidid></search><sort><creationdate>20190115</creationdate><title>A Reverse Rogers–Shephard Inequality for Log-Concave Functions</title><author>Alonso-Gutiérrez, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-c2b3e2c1dbc88a928b9922595936d8afe903be54e4903f519de20c4584735703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Equality</topic><topic>Fourier Analysis</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alonso-Gutiérrez, David</creatorcontrib><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><jtitle>The Journal of Geometric Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alonso-Gutiérrez, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Reverse Rogers–Shephard Inequality for Log-Concave Functions</atitle><jtitle>The Journal of Geometric Analysis</jtitle><stitle>J Geom Anal</stitle><date>2019-01-15</date><risdate>2019</risdate><volume>29</volume><issue>1</issue><spage>299</spage><epage>315</epage><pages>299-315</pages><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>We will prove a reverse Rogers–Shephard inequality for log-concave functions. In some particular cases, the method used for general log-concave functions can be slightly improved, allowing us to prove volume estimates for polars of
ℓ
p
-diferences of convex bodies under the condition that their polar bodies have opposite barycenters.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-018-9991-8</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1256-3671</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1050-6926 |
ispartof | The Journal of Geometric Analysis, 2019-01, Vol.29 (1), p.299-315 |
issn | 1050-6926 1559-002X |
language | eng |
recordid | cdi_proquest_journals_2165145588 |
source | SpringerLink Journals |
subjects | Abstract Harmonic Analysis Convex and Discrete Geometry Differential Geometry Dynamical Systems and Ergodic Theory Equality Fourier Analysis Geometry Global Analysis and Analysis on Manifolds Mathematics Mathematics and Statistics |
title | A Reverse Rogers–Shephard Inequality for Log-Concave Functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A24%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Reverse%20Rogers%E2%80%93Shephard%20Inequality%20for%20Log-Concave%20Functions&rft.jtitle=The%20Journal%20of%20Geometric%20Analysis&rft.au=Alonso-Guti%C3%A9rrez,%20David&rft.date=2019-01-15&rft.volume=29&rft.issue=1&rft.spage=299&rft.epage=315&rft.pages=299-315&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-018-9991-8&rft_dat=%3Cgale_proqu%3EA707339781%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2165145588&rft_id=info:pmid/&rft_galeid=A707339781&rfr_iscdi=true |