Theoretical study of a numerical method to solve a diffusion-convection problemf

The paper analyzes the approximation, stability, convergence, monotonicity, and dissipative and dispersion properties of the diffusion-convection method. The spatial mesh is considered nonuniform. The application of the method to a problem with the third boundary condition is considered. The computa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cybernetics and systems analysis 2008-03, Vol.44 (2), p.283
Hauptverfasser: Prusov, V A, Doroshenko, A E, Chernysh, R I, Guk, L N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 283
container_title Cybernetics and systems analysis
container_volume 44
creator Prusov, V A
Doroshenko, A E
Chernysh, R I
Guk, L N
description The paper analyzes the approximation, stability, convergence, monotonicity, and dissipative and dispersion properties of the diffusion-convection method. The spatial mesh is considered nonuniform. The application of the method to a problem with the third boundary condition is considered. The computational complexity of the algorithm is estimated. [PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s10559-008-0028-3
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_216508125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1468403541</sourcerecordid><originalsourceid>FETCH-proquest_journals_2165081253</originalsourceid><addsrcrecordid>eNqNissKwjAURIMo-PwAd8F99KYhbboWxaUL91LbG2xpe7VJBP_eIH6Ai2GGOYextYStBMh2ToLWuQAwMYkRasRmUmdKGKWycdyQggCVp1M2d64BAAWZmbHz5Y40oK_LouXOh-rNyfKC96HD4Xt26O9UcU_cUfvCyKra2uBq6kVJ_QtLHyd_DHRrsbNLNrFF63D16wXbHA-X_UlE4RnQ-WtDYegjuiYy1WBkotVf0gerfUV1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216508125</pqid></control><display><type>article</type><title>Theoretical study of a numerical method to solve a diffusion-convection problemf</title><source>Springer Nature - Complete Springer Journals</source><creator>Prusov, V A ; Doroshenko, A E ; Chernysh, R I ; Guk, L N</creator><creatorcontrib>Prusov, V A ; Doroshenko, A E ; Chernysh, R I ; Guk, L N</creatorcontrib><description>The paper analyzes the approximation, stability, convergence, monotonicity, and dissipative and dispersion properties of the diffusion-convection method. The spatial mesh is considered nonuniform. The application of the method to a problem with the third boundary condition is considered. The computational complexity of the algorithm is estimated. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1060-0396</identifier><identifier>EISSN: 1573-8337</identifier><identifier>DOI: 10.1007/s10559-008-0028-3</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Algorithms ; Approximation ; Boundary conditions ; Cybernetics ; Numerical analysis ; Studies ; Systems analysis</subject><ispartof>Cybernetics and systems analysis, 2008-03, Vol.44 (2), p.283</ispartof><rights>Springer Science+Business Media, Inc. 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Prusov, V A</creatorcontrib><creatorcontrib>Doroshenko, A E</creatorcontrib><creatorcontrib>Chernysh, R I</creatorcontrib><creatorcontrib>Guk, L N</creatorcontrib><title>Theoretical study of a numerical method to solve a diffusion-convection problemf</title><title>Cybernetics and systems analysis</title><description>The paper analyzes the approximation, stability, convergence, monotonicity, and dissipative and dispersion properties of the diffusion-convection method. The spatial mesh is considered nonuniform. The application of the method to a problem with the third boundary condition is considered. The computational complexity of the algorithm is estimated. [PUBLICATION ABSTRACT]</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Cybernetics</subject><subject>Numerical analysis</subject><subject>Studies</subject><subject>Systems analysis</subject><issn>1060-0396</issn><issn>1573-8337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNissKwjAURIMo-PwAd8F99KYhbboWxaUL91LbG2xpe7VJBP_eIH6Ai2GGOYextYStBMh2ToLWuQAwMYkRasRmUmdKGKWycdyQggCVp1M2d64BAAWZmbHz5Y40oK_LouXOh-rNyfKC96HD4Xt26O9UcU_cUfvCyKra2uBq6kVJ_QtLHyd_DHRrsbNLNrFF63D16wXbHA-X_UlE4RnQ-WtDYegjuiYy1WBkotVf0gerfUV1</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Prusov, V A</creator><creator>Doroshenko, A E</creator><creator>Chernysh, R I</creator><creator>Guk, L N</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20080301</creationdate><title>Theoretical study of a numerical method to solve a diffusion-convection problemf</title><author>Prusov, V A ; Doroshenko, A E ; Chernysh, R I ; Guk, L N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_2165081253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Cybernetics</topic><topic>Numerical analysis</topic><topic>Studies</topic><topic>Systems analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prusov, V A</creatorcontrib><creatorcontrib>Doroshenko, A E</creatorcontrib><creatorcontrib>Chernysh, R I</creatorcontrib><creatorcontrib>Guk, L N</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Cybernetics and systems analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prusov, V A</au><au>Doroshenko, A E</au><au>Chernysh, R I</au><au>Guk, L N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical study of a numerical method to solve a diffusion-convection problemf</atitle><jtitle>Cybernetics and systems analysis</jtitle><date>2008-03-01</date><risdate>2008</risdate><volume>44</volume><issue>2</issue><spage>283</spage><pages>283-</pages><issn>1060-0396</issn><eissn>1573-8337</eissn><abstract>The paper analyzes the approximation, stability, convergence, monotonicity, and dissipative and dispersion properties of the diffusion-convection method. The spatial mesh is considered nonuniform. The application of the method to a problem with the third boundary condition is considered. The computational complexity of the algorithm is estimated. [PUBLICATION ABSTRACT]</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10559-008-0028-3</doi></addata></record>
fulltext fulltext
identifier ISSN: 1060-0396
ispartof Cybernetics and systems analysis, 2008-03, Vol.44 (2), p.283
issn 1060-0396
1573-8337
language eng
recordid cdi_proquest_journals_216508125
source Springer Nature - Complete Springer Journals
subjects Algorithms
Approximation
Boundary conditions
Cybernetics
Numerical analysis
Studies
Systems analysis
title Theoretical study of a numerical method to solve a diffusion-convection problemf
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A48%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20study%20of%20a%20numerical%20method%20to%20solve%20a%20diffusion-convection%20problemf&rft.jtitle=Cybernetics%20and%20systems%20analysis&rft.au=Prusov,%20V%20A&rft.date=2008-03-01&rft.volume=44&rft.issue=2&rft.spage=283&rft.pages=283-&rft.issn=1060-0396&rft.eissn=1573-8337&rft_id=info:doi/10.1007/s10559-008-0028-3&rft_dat=%3Cproquest%3E1468403541%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=216508125&rft_id=info:pmid/&rfr_iscdi=true