The Kalman-Bucy Filter for Linear Stochastic Dynamic Systems with Discontinuous Trajectories

An optimal linear filtration problem is considered in the paper based on Kalman-Bucy results. The sequential linear regression method being a modification of fundamental Wiener results is used. [PUBLICATION ABSTRACT]

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cybernetics and systems analysis 2003-03, Vol.39 (2), p.235
Hauptverfasser: V. Yu. Bereza, Yasinskii, V K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 235
container_title Cybernetics and systems analysis
container_volume 39
creator V. Yu. Bereza
Yasinskii, V K
description An optimal linear filtration problem is considered in the paper based on Kalman-Bucy results. The sequential linear regression method being a modification of fundamental Wiener results is used. [PUBLICATION ABSTRACT]
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_216505193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>424425181</sourcerecordid><originalsourceid>FETCH-proquest_journals_2165051933</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMoWD93eLgPpIb-tlqLoDu7FEoIKU1pE81LkN7eLjyAqxmYWZAoTjJOc86z5ewsZZTxIl2TDWLPGOMsyyPyrDsFNzGMwtBTkBNUevDKQWsd3LVRwsHDW9kJ9FpCORkxznxM6NWI8NG-g1KjtMZrE2xAqJ3olfTWaYU7smrFgGr_45Ycqkt9vtKXs--g0De9Dc7MqTnGacKSuOD8r-kLPsZEcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216505193</pqid></control><display><type>article</type><title>The Kalman-Bucy Filter for Linear Stochastic Dynamic Systems with Discontinuous Trajectories</title><source>SpringerLink Journals</source><creator>V. Yu. Bereza ; Yasinskii, V K</creator><creatorcontrib>V. Yu. Bereza ; Yasinskii, V K</creatorcontrib><description>An optimal linear filtration problem is considered in the paper based on Kalman-Bucy results. The sequential linear regression method being a modification of fundamental Wiener results is used. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1060-0396</identifier><identifier>EISSN: 1573-8337</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Linear programming ; Optimization ; Random variables ; Regression analysis ; Stochastic models ; Studies</subject><ispartof>Cybernetics and systems analysis, 2003-03, Vol.39 (2), p.235</ispartof><rights>Copyright (c) 2003 Plenum Publishing Corporation</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>V. Yu. Bereza</creatorcontrib><creatorcontrib>Yasinskii, V K</creatorcontrib><title>The Kalman-Bucy Filter for Linear Stochastic Dynamic Systems with Discontinuous Trajectories</title><title>Cybernetics and systems analysis</title><description>An optimal linear filtration problem is considered in the paper based on Kalman-Bucy results. The sequential linear regression method being a modification of fundamental Wiener results is used. [PUBLICATION ABSTRACT]</description><subject>Linear programming</subject><subject>Optimization</subject><subject>Random variables</subject><subject>Regression analysis</subject><subject>Stochastic models</subject><subject>Studies</subject><issn>1060-0396</issn><issn>1573-8337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNiksKwjAUAIMoWD93eLgPpIb-tlqLoDu7FEoIKU1pE81LkN7eLjyAqxmYWZAoTjJOc86z5ewsZZTxIl2TDWLPGOMsyyPyrDsFNzGMwtBTkBNUevDKQWsd3LVRwsHDW9kJ9FpCORkxznxM6NWI8NG-g1KjtMZrE2xAqJ3olfTWaYU7smrFgGr_45Ycqkt9vtKXs--g0De9Dc7MqTnGacKSuOD8r-kLPsZEcA</recordid><startdate>20030301</startdate><enddate>20030301</enddate><creator>V. Yu. Bereza</creator><creator>Yasinskii, V K</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20030301</creationdate><title>The Kalman-Bucy Filter for Linear Stochastic Dynamic Systems with Discontinuous Trajectories</title><author>V. Yu. Bereza ; Yasinskii, V K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_2165051933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Linear programming</topic><topic>Optimization</topic><topic>Random variables</topic><topic>Regression analysis</topic><topic>Stochastic models</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>V. Yu. Bereza</creatorcontrib><creatorcontrib>Yasinskii, V K</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Cybernetics and systems analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>V. Yu. Bereza</au><au>Yasinskii, V K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Kalman-Bucy Filter for Linear Stochastic Dynamic Systems with Discontinuous Trajectories</atitle><jtitle>Cybernetics and systems analysis</jtitle><date>2003-03-01</date><risdate>2003</risdate><volume>39</volume><issue>2</issue><spage>235</spage><pages>235-</pages><issn>1060-0396</issn><eissn>1573-8337</eissn><abstract>An optimal linear filtration problem is considered in the paper based on Kalman-Bucy results. The sequential linear regression method being a modification of fundamental Wiener results is used. [PUBLICATION ABSTRACT]</abstract><cop>New York</cop><pub>Springer Nature B.V</pub></addata></record>
fulltext fulltext
identifier ISSN: 1060-0396
ispartof Cybernetics and systems analysis, 2003-03, Vol.39 (2), p.235
issn 1060-0396
1573-8337
language eng
recordid cdi_proquest_journals_216505193
source SpringerLink Journals
subjects Linear programming
Optimization
Random variables
Regression analysis
Stochastic models
Studies
title The Kalman-Bucy Filter for Linear Stochastic Dynamic Systems with Discontinuous Trajectories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T01%3A27%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Kalman-Bucy%20Filter%20for%20Linear%20Stochastic%20Dynamic%20Systems%20with%20Discontinuous%20Trajectories&rft.jtitle=Cybernetics%20and%20systems%20analysis&rft.au=V.%20Yu.%20Bereza&rft.date=2003-03-01&rft.volume=39&rft.issue=2&rft.spage=235&rft.pages=235-&rft.issn=1060-0396&rft.eissn=1573-8337&rft_id=info:doi/&rft_dat=%3Cproquest%3E424425181%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=216505193&rft_id=info:pmid/&rfr_iscdi=true