Approximations in the Problem of Level Crossing by a Compound Renewal Process
The classical problem of level crossing by a compound renewal process is considered, which has been extensively studied and has various applications. For the distribution of the first level crossing time, a new approximation is proposed, which is valid under minimal conditions and is obtained by app...
Gespeichert in:
Veröffentlicht in: | Doklady. Mathematics 2018-11, Vol.98 (3), p.622-625 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 625 |
---|---|
container_issue | 3 |
container_start_page | 622 |
container_title | Doklady. Mathematics |
container_volume | 98 |
creator | Malinovskii, V. K. |
description | The classical problem of level crossing by a compound renewal process is considered, which has been extensively studied and has various applications. For the distribution of the first level crossing time, a new approximation is proposed, which is valid under minimal conditions and is obtained by applying a new method. It has a number of advantages over previously known approximations. |
doi_str_mv | 10.1134/S1064562418070232 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2164628664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2164628664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-898daf2717e9ca1b135825b82d628741b26850c41e7b8c32b6ab022c42abde093</originalsourceid><addsrcrecordid>eNp1UE1LxDAQDaLguvoDvAU8VzOTNM0el6KusKL4cS5Jm65duk1Nuur-e1NW8CCeZuB9zJtHyDmwSwAurp6BSZFKFKBYxpDjAZlAyiFRXOJh3COcjPgxOQlhzZhIkbEJuZ_3vXdfzUYPjesCbTo6vFn66J1p7Ya6mi7th21p7l0ITbeiZkc1zd2md9uuok-2s5-6HfmlDeGUHNW6DfbsZ07J6831S75Ilg-3d_l8mZQc5JComap0jRlkdlZqMMBThalRWElUmQCDUqWsFGAzo0qORmrDEEuB2lSWzfiUXOx9Y_b3rQ1DsXZb38WTBYIU0UVKEVmwZ5VjeG_rovfxUb8rgBVja8Wf1qIG95oQud3K-l_n_0XfLEVs7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2164628664</pqid></control><display><type>article</type><title>Approximations in the Problem of Level Crossing by a Compound Renewal Process</title><source>SpringerLink Journals - AutoHoldings</source><creator>Malinovskii, V. K.</creator><creatorcontrib>Malinovskii, V. K.</creatorcontrib><description>The classical problem of level crossing by a compound renewal process is considered, which has been extensively studied and has various applications. For the distribution of the first level crossing time, a new approximation is proposed, which is valid under minimal conditions and is obtained by applying a new method. It has a number of advantages over previously known approximations.</description><identifier>ISSN: 1064-5624</identifier><identifier>EISSN: 1531-8362</identifier><identifier>DOI: 10.1134/S1064562418070232</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Doklady. Mathematics, 2018-11, Vol.98 (3), p.622-625</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-898daf2717e9ca1b135825b82d628741b26850c41e7b8c32b6ab022c42abde093</citedby><cites>FETCH-LOGICAL-c316t-898daf2717e9ca1b135825b82d628741b26850c41e7b8c32b6ab022c42abde093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1064562418070232$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1064562418070232$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Malinovskii, V. K.</creatorcontrib><title>Approximations in the Problem of Level Crossing by a Compound Renewal Process</title><title>Doklady. Mathematics</title><addtitle>Dokl. Math</addtitle><description>The classical problem of level crossing by a compound renewal process is considered, which has been extensively studied and has various applications. For the distribution of the first level crossing time, a new approximation is proposed, which is valid under minimal conditions and is obtained by applying a new method. It has a number of advantages over previously known approximations.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1064-5624</issn><issn>1531-8362</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LxDAQDaLguvoDvAU8VzOTNM0el6KusKL4cS5Jm65duk1Nuur-e1NW8CCeZuB9zJtHyDmwSwAurp6BSZFKFKBYxpDjAZlAyiFRXOJh3COcjPgxOQlhzZhIkbEJuZ_3vXdfzUYPjesCbTo6vFn66J1p7Ya6mi7th21p7l0ITbeiZkc1zd2md9uuok-2s5-6HfmlDeGUHNW6DfbsZ07J6831S75Ilg-3d_l8mZQc5JComap0jRlkdlZqMMBThalRWElUmQCDUqWsFGAzo0qORmrDEEuB2lSWzfiUXOx9Y_b3rQ1DsXZb38WTBYIU0UVKEVmwZ5VjeG_rovfxUb8rgBVja8Wf1qIG95oQud3K-l_n_0XfLEVs7A</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Malinovskii, V. K.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181101</creationdate><title>Approximations in the Problem of Level Crossing by a Compound Renewal Process</title><author>Malinovskii, V. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-898daf2717e9ca1b135825b82d628741b26850c41e7b8c32b6ab022c42abde093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malinovskii, V. K.</creatorcontrib><collection>CrossRef</collection><jtitle>Doklady. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malinovskii, V. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximations in the Problem of Level Crossing by a Compound Renewal Process</atitle><jtitle>Doklady. Mathematics</jtitle><stitle>Dokl. Math</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>98</volume><issue>3</issue><spage>622</spage><epage>625</epage><pages>622-625</pages><issn>1064-5624</issn><eissn>1531-8362</eissn><abstract>The classical problem of level crossing by a compound renewal process is considered, which has been extensively studied and has various applications. For the distribution of the first level crossing time, a new approximation is proposed, which is valid under minimal conditions and is obtained by applying a new method. It has a number of advantages over previously known approximations.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1064562418070232</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-5624 |
ispartof | Doklady. Mathematics, 2018-11, Vol.98 (3), p.622-625 |
issn | 1064-5624 1531-8362 |
language | eng |
recordid | cdi_proquest_journals_2164628664 |
source | SpringerLink Journals - AutoHoldings |
subjects | Mathematics Mathematics and Statistics |
title | Approximations in the Problem of Level Crossing by a Compound Renewal Process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A18%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximations%20in%20the%20Problem%20of%20Level%20Crossing%20by%20a%20Compound%20Renewal%20Process&rft.jtitle=Doklady.%20Mathematics&rft.au=Malinovskii,%20V.%20K.&rft.date=2018-11-01&rft.volume=98&rft.issue=3&rft.spage=622&rft.epage=625&rft.pages=622-625&rft.issn=1064-5624&rft.eissn=1531-8362&rft_id=info:doi/10.1134/S1064562418070232&rft_dat=%3Cproquest_cross%3E2164628664%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2164628664&rft_id=info:pmid/&rfr_iscdi=true |