On the Distribution of the Maximum k-Degrees of the Binomial Random Graph
For the maximum number Δ n of common neighbors of k vertices in the random graph G ( n , p ), there exist functions a n and σ n such that Δ n − a n σ n converges in distribution to a random variable having the standard Gumbel distribution.
Gespeichert in:
Veröffentlicht in: | Doklady. Mathematics 2018-11, Vol.98 (3), p.619-621 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 621 |
---|---|
container_issue | 3 |
container_start_page | 619 |
container_title | Doklady. Mathematics |
container_volume | 98 |
creator | Zhukovskii, M. E. Rodionov, I. V. |
description | For the maximum number Δ
n
of common neighbors of
k
vertices in the random graph
G
(
n
,
p
), there exist functions
a
n
and σ
n
such that
Δ
n
−
a
n
σ
n
converges in distribution to a random variable having the standard Gumbel distribution. |
doi_str_mv | 10.1134/S1064562418070268 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2164628520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2164628520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-915e5a49f8a154567bce61b0db0ad609cbfa5ea51c8ef7155db3f34ec8f4bb9e3</originalsourceid><addsrcrecordid>eNp1UMlOwzAQtRBIlMIHcIvEOeDxVucILZRKRZVYzpGd2K1LExc7keDvcSmIA-I0o3nLzDyEzgFfAlB29QRYMC4IA4lHmAh5gAbAKeSSCnKY-gTnO_wYncS4xphxgvEAzRZt1q1MNnGxC073nfNt5u3X7EG9u6Zvstd8YpbBmPgD3LjWN05tskfV1r7JpkFtV6foyKpNNGffdYhe7m6fx_f5fDGdja_neUUF6_ICuOGKFVYq4Onika6MAI1rjVUtcFFpq7hRHCpp7Ag4rzW1lJlKWqZ1YegQXex9t8G_9SZ25dr3oU0rSwKCCSLTZ4kFe1YVfIzB2HIbXKPCRwm43CVW_kksacheExO3XZrw6_y_6BNi02xe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2164628520</pqid></control><display><type>article</type><title>On the Distribution of the Maximum k-Degrees of the Binomial Random Graph</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhukovskii, M. E. ; Rodionov, I. V.</creator><creatorcontrib>Zhukovskii, M. E. ; Rodionov, I. V.</creatorcontrib><description>For the maximum number Δ
n
of common neighbors of
k
vertices in the random graph
G
(
n
,
p
), there exist functions
a
n
and σ
n
such that
Δ
n
−
a
n
σ
n
converges in distribution to a random variable having the standard Gumbel distribution.</description><identifier>ISSN: 1064-5624</identifier><identifier>EISSN: 1531-8362</identifier><identifier>DOI: 10.1134/S1064562418070268</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Apexes ; Graph theory ; Mathematics ; Mathematics and Statistics ; Random variables</subject><ispartof>Doklady. Mathematics, 2018-11, Vol.98 (3), p.619-621</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-915e5a49f8a154567bce61b0db0ad609cbfa5ea51c8ef7155db3f34ec8f4bb9e3</citedby><cites>FETCH-LOGICAL-c364t-915e5a49f8a154567bce61b0db0ad609cbfa5ea51c8ef7155db3f34ec8f4bb9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1064562418070268$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1064562418070268$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhukovskii, M. E.</creatorcontrib><creatorcontrib>Rodionov, I. V.</creatorcontrib><title>On the Distribution of the Maximum k-Degrees of the Binomial Random Graph</title><title>Doklady. Mathematics</title><addtitle>Dokl. Math</addtitle><description>For the maximum number Δ
n
of common neighbors of
k
vertices in the random graph
G
(
n
,
p
), there exist functions
a
n
and σ
n
such that
Δ
n
−
a
n
σ
n
converges in distribution to a random variable having the standard Gumbel distribution.</description><subject>Apexes</subject><subject>Graph theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Random variables</subject><issn>1064-5624</issn><issn>1531-8362</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UMlOwzAQtRBIlMIHcIvEOeDxVucILZRKRZVYzpGd2K1LExc7keDvcSmIA-I0o3nLzDyEzgFfAlB29QRYMC4IA4lHmAh5gAbAKeSSCnKY-gTnO_wYncS4xphxgvEAzRZt1q1MNnGxC073nfNt5u3X7EG9u6Zvstd8YpbBmPgD3LjWN05tskfV1r7JpkFtV6foyKpNNGffdYhe7m6fx_f5fDGdja_neUUF6_ICuOGKFVYq4Onika6MAI1rjVUtcFFpq7hRHCpp7Ag4rzW1lJlKWqZ1YegQXex9t8G_9SZ25dr3oU0rSwKCCSLTZ4kFe1YVfIzB2HIbXKPCRwm43CVW_kksacheExO3XZrw6_y_6BNi02xe</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Zhukovskii, M. E.</creator><creator>Rodionov, I. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181101</creationdate><title>On the Distribution of the Maximum k-Degrees of the Binomial Random Graph</title><author>Zhukovskii, M. E. ; Rodionov, I. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-915e5a49f8a154567bce61b0db0ad609cbfa5ea51c8ef7155db3f34ec8f4bb9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Apexes</topic><topic>Graph theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Random variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhukovskii, M. E.</creatorcontrib><creatorcontrib>Rodionov, I. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Doklady. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhukovskii, M. E.</au><au>Rodionov, I. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Distribution of the Maximum k-Degrees of the Binomial Random Graph</atitle><jtitle>Doklady. Mathematics</jtitle><stitle>Dokl. Math</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>98</volume><issue>3</issue><spage>619</spage><epage>621</epage><pages>619-621</pages><issn>1064-5624</issn><eissn>1531-8362</eissn><abstract>For the maximum number Δ
n
of common neighbors of
k
vertices in the random graph
G
(
n
,
p
), there exist functions
a
n
and σ
n
such that
Δ
n
−
a
n
σ
n
converges in distribution to a random variable having the standard Gumbel distribution.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1064562418070268</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-5624 |
ispartof | Doklady. Mathematics, 2018-11, Vol.98 (3), p.619-621 |
issn | 1064-5624 1531-8362 |
language | eng |
recordid | cdi_proquest_journals_2164628520 |
source | SpringerLink Journals - AutoHoldings |
subjects | Apexes Graph theory Mathematics Mathematics and Statistics Random variables |
title | On the Distribution of the Maximum k-Degrees of the Binomial Random Graph |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T14%3A11%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Distribution%20of%20the%20Maximum%20k-Degrees%20of%20the%20Binomial%20Random%20Graph&rft.jtitle=Doklady.%20Mathematics&rft.au=Zhukovskii,%20M.%20E.&rft.date=2018-11-01&rft.volume=98&rft.issue=3&rft.spage=619&rft.epage=621&rft.pages=619-621&rft.issn=1064-5624&rft.eissn=1531-8362&rft_id=info:doi/10.1134/S1064562418070268&rft_dat=%3Cproquest_cross%3E2164628520%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2164628520&rft_id=info:pmid/&rfr_iscdi=true |