Synthesis and Characterization of Porous Carbon/Nickel Oxide Nanocomposites for Gas Storage and Negatronic Devices

Porous organic/inorganic nanocomposites were synthesized by sol–gel technique after the incorporation of nickel oxide (NiO) nanoparticles in carbon composite based on pyrogallol and formaldehyde (PF) using picric acid as catalyst. After a drying step, the samples were heated during 2 h at different...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of inorganic and organometallic polymers and materials 2019-01, Vol.29 (1), p.192-202
Hauptverfasser: Ben Mansour, N., Djeridi, W., El Mir, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 202
container_issue 1
container_start_page 192
container_title Journal of inorganic and organometallic polymers and materials
container_volume 29
creator Ben Mansour, N.
Djeridi, W.
El Mir, L.
description Porous organic/inorganic nanocomposites were synthesized by sol–gel technique after the incorporation of nickel oxide (NiO) nanoparticles in carbon composite based on pyrogallol and formaldehyde (PF) using picric acid as catalyst. After a drying step, the samples were heated during 2 h at different pyrolysis temperatures from 600 to 1000 °C in tubular furnace under nitrogen atmosphere. The XRD pattern exhibit that PF composite is amorphous even after thermal treatment at 1000 °C. On the other hand, the PF/NiO nanocomposites are crystallized with the appearance of the graphite structure at high pyrolysis temperature. The gas adsorption capacities for CO 2 indicate that the PF composite has a tendency to adsorb CO 2 higher than PF/NiO nanocomposite. In fact, the maximum value of capacity is of the order 7.5 mmol/g in PF composite and 6.5 mmol/g in PF/NiO nanocomposite. The dc conductivity shows the dominance of percolation phenomenon and explained by two models; the three dimensions variable range hopping and the nearest neighbor hopping. The voltage–current V(I) characteristics show the presence of negative differential resistance at room measurement temperature in PF/NiO-625 °C sample. The ac conductance is attributed to different origins, so it is decried by two models, like hopping conduction mechanism in PF-675 °C composite and small polaron hopping model in PF/NiO-625 °C nanocomposite.
doi_str_mv 10.1007/s10904-018-0978-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2164624145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2164624145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-77eeca8e3417fce8085d191721f735c4a7f06e350ea1bc163fb25a6fad31ea293</originalsourceid><addsrcrecordid>eNp1kEFPAjEQhTdGExH9Ad6aeF7pbLfb5WhQ0YSACXpuhu4UirDFdjHir3cRoydP8w7ve5N8SXIJ_Bo4V70IvM_zlEOZ8r4qU3mUdECqPIVcwvFvzsVpchbjknNRcgmdJEx3dbOg6CLDumKDBQY0DQX3iY3zNfOWPfngt5ENMMx83Rs780orNvlwFbEx1t749cZH11Bk1gc2xMimjQ84p-_FMc2xCb52ht3SuzMUz5MTi6tIFz-3m7zc3z0PHtLRZPg4uBmlRkjRpEoRGSxJ5KCsoZKXsoI-qAysEtLkqCwvSEhOCDMDhbCzTGJhsRJAmPVFN7k67G6Cf9tSbPTSb0PdvtQZFHmR5a2btgWHlgk-xkBWb4JbY9hp4HqvVh_U6lat3qvVeyY7MLHt1nMKf8v_Q1-0KX07</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2164624145</pqid></control><display><type>article</type><title>Synthesis and Characterization of Porous Carbon/Nickel Oxide Nanocomposites for Gas Storage and Negatronic Devices</title><source>SpringerNature Journals</source><creator>Ben Mansour, N. ; Djeridi, W. ; El Mir, L.</creator><creatorcontrib>Ben Mansour, N. ; Djeridi, W. ; El Mir, L.</creatorcontrib><description>Porous organic/inorganic nanocomposites were synthesized by sol–gel technique after the incorporation of nickel oxide (NiO) nanoparticles in carbon composite based on pyrogallol and formaldehyde (PF) using picric acid as catalyst. After a drying step, the samples were heated during 2 h at different pyrolysis temperatures from 600 to 1000 °C in tubular furnace under nitrogen atmosphere. The XRD pattern exhibit that PF composite is amorphous even after thermal treatment at 1000 °C. On the other hand, the PF/NiO nanocomposites are crystallized with the appearance of the graphite structure at high pyrolysis temperature. The gas adsorption capacities for CO 2 indicate that the PF composite has a tendency to adsorb CO 2 higher than PF/NiO nanocomposite. In fact, the maximum value of capacity is of the order 7.5 mmol/g in PF composite and 6.5 mmol/g in PF/NiO nanocomposite. The dc conductivity shows the dominance of percolation phenomenon and explained by two models; the three dimensions variable range hopping and the nearest neighbor hopping. The voltage–current V(I) characteristics show the presence of negative differential resistance at room measurement temperature in PF/NiO-625 °C sample. The ac conductance is attributed to different origins, so it is decried by two models, like hopping conduction mechanism in PF-675 °C composite and small polaron hopping model in PF/NiO-625 °C nanocomposite.</description><identifier>ISSN: 1574-1443</identifier><identifier>EISSN: 1574-1451</identifier><identifier>DOI: 10.1007/s10904-018-0978-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Atmospheric models ; Carbon dioxide ; Chemistry ; Chemistry and Materials Science ; Crystallization ; Differential thermal analysis ; Heat treatment ; Hopping conduction ; Inorganic Chemistry ; Nanocomposites ; Nanoparticles ; Nickel oxides ; Organic Chemistry ; Percolation ; Polymer Sciences ; Pyrolysis ; Resistance ; Sol-gel processes ; Three dimensional models</subject><ispartof>Journal of inorganic and organometallic polymers and materials, 2019-01, Vol.29 (1), p.192-202</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-77eeca8e3417fce8085d191721f735c4a7f06e350ea1bc163fb25a6fad31ea293</citedby><cites>FETCH-LOGICAL-c353t-77eeca8e3417fce8085d191721f735c4a7f06e350ea1bc163fb25a6fad31ea293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10904-018-0978-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10904-018-0978-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ben Mansour, N.</creatorcontrib><creatorcontrib>Djeridi, W.</creatorcontrib><creatorcontrib>El Mir, L.</creatorcontrib><title>Synthesis and Characterization of Porous Carbon/Nickel Oxide Nanocomposites for Gas Storage and Negatronic Devices</title><title>Journal of inorganic and organometallic polymers and materials</title><addtitle>J Inorg Organomet Polym</addtitle><description>Porous organic/inorganic nanocomposites were synthesized by sol–gel technique after the incorporation of nickel oxide (NiO) nanoparticles in carbon composite based on pyrogallol and formaldehyde (PF) using picric acid as catalyst. After a drying step, the samples were heated during 2 h at different pyrolysis temperatures from 600 to 1000 °C in tubular furnace under nitrogen atmosphere. The XRD pattern exhibit that PF composite is amorphous even after thermal treatment at 1000 °C. On the other hand, the PF/NiO nanocomposites are crystallized with the appearance of the graphite structure at high pyrolysis temperature. The gas adsorption capacities for CO 2 indicate that the PF composite has a tendency to adsorb CO 2 higher than PF/NiO nanocomposite. In fact, the maximum value of capacity is of the order 7.5 mmol/g in PF composite and 6.5 mmol/g in PF/NiO nanocomposite. The dc conductivity shows the dominance of percolation phenomenon and explained by two models; the three dimensions variable range hopping and the nearest neighbor hopping. The voltage–current V(I) characteristics show the presence of negative differential resistance at room measurement temperature in PF/NiO-625 °C sample. The ac conductance is attributed to different origins, so it is decried by two models, like hopping conduction mechanism in PF-675 °C composite and small polaron hopping model in PF/NiO-625 °C nanocomposite.</description><subject>Atmospheric models</subject><subject>Carbon dioxide</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Crystallization</subject><subject>Differential thermal analysis</subject><subject>Heat treatment</subject><subject>Hopping conduction</subject><subject>Inorganic Chemistry</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Nickel oxides</subject><subject>Organic Chemistry</subject><subject>Percolation</subject><subject>Polymer Sciences</subject><subject>Pyrolysis</subject><subject>Resistance</subject><subject>Sol-gel processes</subject><subject>Three dimensional models</subject><issn>1574-1443</issn><issn>1574-1451</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEFPAjEQhTdGExH9Ad6aeF7pbLfb5WhQ0YSACXpuhu4UirDFdjHir3cRoydP8w7ve5N8SXIJ_Bo4V70IvM_zlEOZ8r4qU3mUdECqPIVcwvFvzsVpchbjknNRcgmdJEx3dbOg6CLDumKDBQY0DQX3iY3zNfOWPfngt5ENMMx83Rs780orNvlwFbEx1t749cZH11Bk1gc2xMimjQ84p-_FMc2xCb52ht3SuzMUz5MTi6tIFz-3m7zc3z0PHtLRZPg4uBmlRkjRpEoRGSxJ5KCsoZKXsoI-qAysEtLkqCwvSEhOCDMDhbCzTGJhsRJAmPVFN7k67G6Cf9tSbPTSb0PdvtQZFHmR5a2btgWHlgk-xkBWb4JbY9hp4HqvVh_U6lat3qvVeyY7MLHt1nMKf8v_Q1-0KX07</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Ben Mansour, N.</creator><creator>Djeridi, W.</creator><creator>El Mir, L.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190101</creationdate><title>Synthesis and Characterization of Porous Carbon/Nickel Oxide Nanocomposites for Gas Storage and Negatronic Devices</title><author>Ben Mansour, N. ; Djeridi, W. ; El Mir, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-77eeca8e3417fce8085d191721f735c4a7f06e350ea1bc163fb25a6fad31ea293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atmospheric models</topic><topic>Carbon dioxide</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Crystallization</topic><topic>Differential thermal analysis</topic><topic>Heat treatment</topic><topic>Hopping conduction</topic><topic>Inorganic Chemistry</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Nickel oxides</topic><topic>Organic Chemistry</topic><topic>Percolation</topic><topic>Polymer Sciences</topic><topic>Pyrolysis</topic><topic>Resistance</topic><topic>Sol-gel processes</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ben Mansour, N.</creatorcontrib><creatorcontrib>Djeridi, W.</creatorcontrib><creatorcontrib>El Mir, L.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of inorganic and organometallic polymers and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ben Mansour, N.</au><au>Djeridi, W.</au><au>El Mir, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and Characterization of Porous Carbon/Nickel Oxide Nanocomposites for Gas Storage and Negatronic Devices</atitle><jtitle>Journal of inorganic and organometallic polymers and materials</jtitle><stitle>J Inorg Organomet Polym</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>29</volume><issue>1</issue><spage>192</spage><epage>202</epage><pages>192-202</pages><issn>1574-1443</issn><eissn>1574-1451</eissn><abstract>Porous organic/inorganic nanocomposites were synthesized by sol–gel technique after the incorporation of nickel oxide (NiO) nanoparticles in carbon composite based on pyrogallol and formaldehyde (PF) using picric acid as catalyst. After a drying step, the samples were heated during 2 h at different pyrolysis temperatures from 600 to 1000 °C in tubular furnace under nitrogen atmosphere. The XRD pattern exhibit that PF composite is amorphous even after thermal treatment at 1000 °C. On the other hand, the PF/NiO nanocomposites are crystallized with the appearance of the graphite structure at high pyrolysis temperature. The gas adsorption capacities for CO 2 indicate that the PF composite has a tendency to adsorb CO 2 higher than PF/NiO nanocomposite. In fact, the maximum value of capacity is of the order 7.5 mmol/g in PF composite and 6.5 mmol/g in PF/NiO nanocomposite. The dc conductivity shows the dominance of percolation phenomenon and explained by two models; the three dimensions variable range hopping and the nearest neighbor hopping. The voltage–current V(I) characteristics show the presence of negative differential resistance at room measurement temperature in PF/NiO-625 °C sample. The ac conductance is attributed to different origins, so it is decried by two models, like hopping conduction mechanism in PF-675 °C composite and small polaron hopping model in PF/NiO-625 °C nanocomposite.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10904-018-0978-5</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1574-1443
ispartof Journal of inorganic and organometallic polymers and materials, 2019-01, Vol.29 (1), p.192-202
issn 1574-1443
1574-1451
language eng
recordid cdi_proquest_journals_2164624145
source SpringerNature Journals
subjects Atmospheric models
Carbon dioxide
Chemistry
Chemistry and Materials Science
Crystallization
Differential thermal analysis
Heat treatment
Hopping conduction
Inorganic Chemistry
Nanocomposites
Nanoparticles
Nickel oxides
Organic Chemistry
Percolation
Polymer Sciences
Pyrolysis
Resistance
Sol-gel processes
Three dimensional models
title Synthesis and Characterization of Porous Carbon/Nickel Oxide Nanocomposites for Gas Storage and Negatronic Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A39%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20Characterization%20of%20Porous%20Carbon/Nickel%20Oxide%20Nanocomposites%20for%20Gas%20Storage%20and%20Negatronic%20Devices&rft.jtitle=Journal%20of%20inorganic%20and%20organometallic%20polymers%20and%20materials&rft.au=Ben%20Mansour,%20N.&rft.date=2019-01-01&rft.volume=29&rft.issue=1&rft.spage=192&rft.epage=202&rft.pages=192-202&rft.issn=1574-1443&rft.eissn=1574-1451&rft_id=info:doi/10.1007/s10904-018-0978-5&rft_dat=%3Cproquest_cross%3E2164624145%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2164624145&rft_id=info:pmid/&rfr_iscdi=true