Closed-form estimators for finite-order ARCH models as simple and competitive alternatives to QMLE

Strong consistency and (weak) distributional convergence to highly non-Gaussian limits are established for closed-form, two stage least squares (TSLS) estimators of linear and threshold ARCH ( ) models, with special attention paid to the ARCH (1) and threshold ARCH (1) cases. Conditions supporting t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Studies in nonlinear dynamics and econometrics 2018-12, Vol.22 (5), p.1-25
1. Verfasser: Prono, Todd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25
container_issue 5
container_start_page 1
container_title Studies in nonlinear dynamics and econometrics
container_volume 22
creator Prono, Todd
description Strong consistency and (weak) distributional convergence to highly non-Gaussian limits are established for closed-form, two stage least squares (TSLS) estimators of linear and threshold ARCH ( ) models, with special attention paid to the ARCH (1) and threshold ARCH (1) cases. Conditions supporting these results include (relatively) mild moment existence criteria that enjoy empirical support. These conditions are not shared by competing estimators like OLS. Identification of the TSLS estimators depends on asymmetry, either in the model’s rescaled errors or in the conditional variance function. Monte Carlo studies reveal TSLS estimation can sizably outperform quasi maximum likelihood (QML) in small samples and even best recently proposed two-step estimators specifically designed to enhance the efficiency of QML.
doi_str_mv 10.1515/snde-2017-0070
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2164529514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2164529514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-7958d970c95db9f00e06afd519845cdb18582b2a248c7a3c8223a7d88b8d23ae3</originalsourceid><addsrcrecordid>eNptkMFLwzAUxoMoOKdXzwHPmUnaLMlxjOmEiSh6DmmSSkfb1CRT_O9NraAHT-978H2P9_0AuCR4QRhh17G3DlFMOMKY4yMwI4wJVHAsjrPGgiAi6PIUnMW4x5gwIekMVOvWR2dR7UMHXUxNp5MPEeYd1k3fJId8sC7A1dN6CztvXRuhjjA23dA6qHsLje8Gl5rUvOe9TS70etQRJg8f73ebc3BS6za6i585By83m-f1Fu0ebu_Wqx0yJeYJccmElRwbyWwla4wdXuraMiJFyYytiGCCVlTTUhiuCyMoLTS3QlTCZuWKObia7g7Bvx1yF7X3h_xMGxUly5JRyUiZXYvJZYKPMbhaDSGXDp-KYDVyVCNHNXJUI8ccgFPAGd838Y-9FBmhFKNFTpaP7_7WvYbDZxa_D_x_m1JWfAFLPoPr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2164529514</pqid></control><display><type>article</type><title>Closed-form estimators for finite-order ARCH models as simple and competitive alternatives to QMLE</title><source>De Gruyter journals</source><creator>Prono, Todd</creator><creatorcontrib>Prono, Todd</creatorcontrib><description>Strong consistency and (weak) distributional convergence to highly non-Gaussian limits are established for closed-form, two stage least squares (TSLS) estimators of linear and threshold ARCH ( ) models, with special attention paid to the ARCH (1) and threshold ARCH (1) cases. Conditions supporting these results include (relatively) mild moment existence criteria that enjoy empirical support. These conditions are not shared by competing estimators like OLS. Identification of the TSLS estimators depends on asymmetry, either in the model’s rescaled errors or in the conditional variance function. Monte Carlo studies reveal TSLS estimation can sizably outperform quasi maximum likelihood (QML) in small samples and even best recently proposed two-step estimators specifically designed to enhance the efficiency of QML.</description><identifier>ISSN: 1081-1826</identifier><identifier>EISSN: 1558-3708</identifier><identifier>DOI: 10.1515/snde-2017-0070</identifier><language>eng</language><publisher>Berlin: De Gruyter</publisher><subject>ARCH ; Asymmetry ; C13 ; C22 ; C58 ; closed form estimation ; Closed form solutions ; Computer simulation ; Convergence ; Econometrics ; Estimators ; Exact solutions ; heavy tails ; instrumental variables ; Linear programming ; Mathematical analysis ; Mean square errors ; Monte Carlo simulation ; Normal distribution ; regular variation ; threshold ARCH ; two stage least squares</subject><ispartof>Studies in nonlinear dynamics and econometrics, 2018-12, Vol.22 (5), p.1-25</ispartof><rights>Copyright Walter de Gruyter GmbH Dec 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-7958d970c95db9f00e06afd519845cdb18582b2a248c7a3c8223a7d88b8d23ae3</citedby><cites>FETCH-LOGICAL-c407t-7958d970c95db9f00e06afd519845cdb18582b2a248c7a3c8223a7d88b8d23ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/snde-2017-0070/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/snde-2017-0070/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,66497,68281</link.rule.ids></links><search><creatorcontrib>Prono, Todd</creatorcontrib><title>Closed-form estimators for finite-order ARCH models as simple and competitive alternatives to QMLE</title><title>Studies in nonlinear dynamics and econometrics</title><description>Strong consistency and (weak) distributional convergence to highly non-Gaussian limits are established for closed-form, two stage least squares (TSLS) estimators of linear and threshold ARCH ( ) models, with special attention paid to the ARCH (1) and threshold ARCH (1) cases. Conditions supporting these results include (relatively) mild moment existence criteria that enjoy empirical support. These conditions are not shared by competing estimators like OLS. Identification of the TSLS estimators depends on asymmetry, either in the model’s rescaled errors or in the conditional variance function. Monte Carlo studies reveal TSLS estimation can sizably outperform quasi maximum likelihood (QML) in small samples and even best recently proposed two-step estimators specifically designed to enhance the efficiency of QML.</description><subject>ARCH</subject><subject>Asymmetry</subject><subject>C13</subject><subject>C22</subject><subject>C58</subject><subject>closed form estimation</subject><subject>Closed form solutions</subject><subject>Computer simulation</subject><subject>Convergence</subject><subject>Econometrics</subject><subject>Estimators</subject><subject>Exact solutions</subject><subject>heavy tails</subject><subject>instrumental variables</subject><subject>Linear programming</subject><subject>Mathematical analysis</subject><subject>Mean square errors</subject><subject>Monte Carlo simulation</subject><subject>Normal distribution</subject><subject>regular variation</subject><subject>threshold ARCH</subject><subject>two stage least squares</subject><issn>1081-1826</issn><issn>1558-3708</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNptkMFLwzAUxoMoOKdXzwHPmUnaLMlxjOmEiSh6DmmSSkfb1CRT_O9NraAHT-978H2P9_0AuCR4QRhh17G3DlFMOMKY4yMwI4wJVHAsjrPGgiAi6PIUnMW4x5gwIekMVOvWR2dR7UMHXUxNp5MPEeYd1k3fJId8sC7A1dN6CztvXRuhjjA23dA6qHsLje8Gl5rUvOe9TS70etQRJg8f73ebc3BS6za6i585By83m-f1Fu0ebu_Wqx0yJeYJccmElRwbyWwla4wdXuraMiJFyYytiGCCVlTTUhiuCyMoLTS3QlTCZuWKObia7g7Bvx1yF7X3h_xMGxUly5JRyUiZXYvJZYKPMbhaDSGXDp-KYDVyVCNHNXJUI8ccgFPAGd838Y-9FBmhFKNFTpaP7_7WvYbDZxa_D_x_m1JWfAFLPoPr</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Prono, Todd</creator><general>De Gruyter</general><general>Walter de Gruyter GmbH</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20181201</creationdate><title>Closed-form estimators for finite-order ARCH models as simple and competitive alternatives to QMLE</title><author>Prono, Todd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-7958d970c95db9f00e06afd519845cdb18582b2a248c7a3c8223a7d88b8d23ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>ARCH</topic><topic>Asymmetry</topic><topic>C13</topic><topic>C22</topic><topic>C58</topic><topic>closed form estimation</topic><topic>Closed form solutions</topic><topic>Computer simulation</topic><topic>Convergence</topic><topic>Econometrics</topic><topic>Estimators</topic><topic>Exact solutions</topic><topic>heavy tails</topic><topic>instrumental variables</topic><topic>Linear programming</topic><topic>Mathematical analysis</topic><topic>Mean square errors</topic><topic>Monte Carlo simulation</topic><topic>Normal distribution</topic><topic>regular variation</topic><topic>threshold ARCH</topic><topic>two stage least squares</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prono, Todd</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Studies in nonlinear dynamics and econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prono, Todd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Closed-form estimators for finite-order ARCH models as simple and competitive alternatives to QMLE</atitle><jtitle>Studies in nonlinear dynamics and econometrics</jtitle><date>2018-12-01</date><risdate>2018</risdate><volume>22</volume><issue>5</issue><spage>1</spage><epage>25</epage><pages>1-25</pages><issn>1081-1826</issn><eissn>1558-3708</eissn><abstract>Strong consistency and (weak) distributional convergence to highly non-Gaussian limits are established for closed-form, two stage least squares (TSLS) estimators of linear and threshold ARCH ( ) models, with special attention paid to the ARCH (1) and threshold ARCH (1) cases. Conditions supporting these results include (relatively) mild moment existence criteria that enjoy empirical support. These conditions are not shared by competing estimators like OLS. Identification of the TSLS estimators depends on asymmetry, either in the model’s rescaled errors or in the conditional variance function. Monte Carlo studies reveal TSLS estimation can sizably outperform quasi maximum likelihood (QML) in small samples and even best recently proposed two-step estimators specifically designed to enhance the efficiency of QML.</abstract><cop>Berlin</cop><pub>De Gruyter</pub><doi>10.1515/snde-2017-0070</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1081-1826
ispartof Studies in nonlinear dynamics and econometrics, 2018-12, Vol.22 (5), p.1-25
issn 1081-1826
1558-3708
language eng
recordid cdi_proquest_journals_2164529514
source De Gruyter journals
subjects ARCH
Asymmetry
C13
C22
C58
closed form estimation
Closed form solutions
Computer simulation
Convergence
Econometrics
Estimators
Exact solutions
heavy tails
instrumental variables
Linear programming
Mathematical analysis
Mean square errors
Monte Carlo simulation
Normal distribution
regular variation
threshold ARCH
two stage least squares
title Closed-form estimators for finite-order ARCH models as simple and competitive alternatives to QMLE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A47%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Closed-form%20estimators%20for%20finite-order%20ARCH%20models%20as%20simple%20and%20competitive%20alternatives%20to%20QMLE&rft.jtitle=Studies%20in%20nonlinear%20dynamics%20and%20econometrics&rft.au=Prono,%20Todd&rft.date=2018-12-01&rft.volume=22&rft.issue=5&rft.spage=1&rft.epage=25&rft.pages=1-25&rft.issn=1081-1826&rft.eissn=1558-3708&rft_id=info:doi/10.1515/snde-2017-0070&rft_dat=%3Cproquest_cross%3E2164529514%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2164529514&rft_id=info:pmid/&rfr_iscdi=true