The shear-driven transformation mechanism from glassy carbon to hexagonal diamond

Hexagonal diamond, a potentially superhard material, forms from a glassy carbon precursor at pressures of ∼100 GPa at the relatively low temperature of 400 °C. The formation mechanism of the hexagonal diamond phase was investigated by performing microstructural analysis on cross-sections of the reco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2019-02, Vol.142, p.475-481
Hauptverfasser: Wong, S., Shiell, T.B., Cook, B.A., Bradby, J.E., McKenzie, D.R., McCulloch, D.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 481
container_issue
container_start_page 475
container_title Carbon (New York)
container_volume 142
creator Wong, S.
Shiell, T.B.
Cook, B.A.
Bradby, J.E.
McKenzie, D.R.
McCulloch, D.G.
description Hexagonal diamond, a potentially superhard material, forms from a glassy carbon precursor at pressures of ∼100 GPa at the relatively low temperature of 400 °C. The formation mechanism of the hexagonal diamond phase was investigated by performing microstructural analysis on cross-sections of the recovered samples. Three distinct structures have been observed, a graphitic region near the centre of the sample with low density, a hexagonal diamond region at the edge of the sample with high density, and a mixed region containing significant proportions of both the graphitic structure and hexagonal diamond. The hexagonal diamond was more likely to occur at greater radial distance from the centre of the sample with some evidence for greater amounts also near the diamond anvil faces. The observed distribution of the hexagonal phase correlates well to regions of greatest shear strain expected from modelling studies of strain fields in diamond anvil cells. The findings support the proposition that shear strain plays an important role in the formation of hexagonal diamond, and that it may be a driving force for the natural occurrence of hexagonal diamond in the shear zone of meteorite impact craters. [Display omitted]
doi_str_mv 10.1016/j.carbon.2018.10.080
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2164529148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622318309990</els_id><sourcerecordid>2164529148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-b809f2e691ec1eff3e204c8d8a5daceb5e3d5a157aa071806bd64311b27dd63d3</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoPPAQ8t-araXoRZPELFkRYzyFNXrcp22ZNuov-e7vUs6fHG2bmvRmEbinJKaHyvsutiXUYckaomqCcKHKGFlSVPOOqoudoQQhRmWSMX6KrlLppFYqKBfrYtIBTCyZmLvojDHiMZkhNiL0ZfRhwD7Y1g089bmLo8XZnUvrB8z08BtzCt9mGweyw86YPg7tGF43ZJbj5m0v0-fy0Wb1m6_eXt9XjOrNCyDGrFakaBrKiYCk0DQdGhFVOmcIZC3UB3BWGFqUxpKSKyNpJwSmtWemc5I4v0d3su4_h6wBp1F04xOmRpBmVomAVFWpiiZllY0gpQqP30fcm_mhK9Kk83ek5jD6Vd0Kn8ibZwyyDKcHRQ9TJehgsOB_BjtoF_7_BL8SceyI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2164529148</pqid></control><display><type>article</type><title>The shear-driven transformation mechanism from glassy carbon to hexagonal diamond</title><source>Elsevier ScienceDirect Journals</source><creator>Wong, S. ; Shiell, T.B. ; Cook, B.A. ; Bradby, J.E. ; McKenzie, D.R. ; McCulloch, D.G.</creator><creatorcontrib>Wong, S. ; Shiell, T.B. ; Cook, B.A. ; Bradby, J.E. ; McKenzie, D.R. ; McCulloch, D.G.</creatorcontrib><description>Hexagonal diamond, a potentially superhard material, forms from a glassy carbon precursor at pressures of ∼100 GPa at the relatively low temperature of 400 °C. The formation mechanism of the hexagonal diamond phase was investigated by performing microstructural analysis on cross-sections of the recovered samples. Three distinct structures have been observed, a graphitic region near the centre of the sample with low density, a hexagonal diamond region at the edge of the sample with high density, and a mixed region containing significant proportions of both the graphitic structure and hexagonal diamond. The hexagonal diamond was more likely to occur at greater radial distance from the centre of the sample with some evidence for greater amounts also near the diamond anvil faces. The observed distribution of the hexagonal phase correlates well to regions of greatest shear strain expected from modelling studies of strain fields in diamond anvil cells. The findings support the proposition that shear strain plays an important role in the formation of hexagonal diamond, and that it may be a driving force for the natural occurrence of hexagonal diamond in the shear zone of meteorite impact craters. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2018.10.080</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Carbon ; Density ; Diamond anvil cells ; Diamonds ; Glassy carbon ; Graphitic structure ; Hexagonal phase ; Meteorite collisions ; Meteorite craters ; Microstructural analysis ; Shear strain ; Shear zone</subject><ispartof>Carbon (New York), 2019-02, Vol.142, p.475-481</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-b809f2e691ec1eff3e204c8d8a5daceb5e3d5a157aa071806bd64311b27dd63d3</citedby><cites>FETCH-LOGICAL-c446t-b809f2e691ec1eff3e204c8d8a5daceb5e3d5a157aa071806bd64311b27dd63d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0008622318309990$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Wong, S.</creatorcontrib><creatorcontrib>Shiell, T.B.</creatorcontrib><creatorcontrib>Cook, B.A.</creatorcontrib><creatorcontrib>Bradby, J.E.</creatorcontrib><creatorcontrib>McKenzie, D.R.</creatorcontrib><creatorcontrib>McCulloch, D.G.</creatorcontrib><title>The shear-driven transformation mechanism from glassy carbon to hexagonal diamond</title><title>Carbon (New York)</title><description>Hexagonal diamond, a potentially superhard material, forms from a glassy carbon precursor at pressures of ∼100 GPa at the relatively low temperature of 400 °C. The formation mechanism of the hexagonal diamond phase was investigated by performing microstructural analysis on cross-sections of the recovered samples. Three distinct structures have been observed, a graphitic region near the centre of the sample with low density, a hexagonal diamond region at the edge of the sample with high density, and a mixed region containing significant proportions of both the graphitic structure and hexagonal diamond. The hexagonal diamond was more likely to occur at greater radial distance from the centre of the sample with some evidence for greater amounts also near the diamond anvil faces. The observed distribution of the hexagonal phase correlates well to regions of greatest shear strain expected from modelling studies of strain fields in diamond anvil cells. The findings support the proposition that shear strain plays an important role in the formation of hexagonal diamond, and that it may be a driving force for the natural occurrence of hexagonal diamond in the shear zone of meteorite impact craters. [Display omitted]</description><subject>Carbon</subject><subject>Density</subject><subject>Diamond anvil cells</subject><subject>Diamonds</subject><subject>Glassy carbon</subject><subject>Graphitic structure</subject><subject>Hexagonal phase</subject><subject>Meteorite collisions</subject><subject>Meteorite craters</subject><subject>Microstructural analysis</subject><subject>Shear strain</subject><subject>Shear zone</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLguvoPPAQ8t-araXoRZPELFkRYzyFNXrcp22ZNuov-e7vUs6fHG2bmvRmEbinJKaHyvsutiXUYckaomqCcKHKGFlSVPOOqoudoQQhRmWSMX6KrlLppFYqKBfrYtIBTCyZmLvojDHiMZkhNiL0ZfRhwD7Y1g089bmLo8XZnUvrB8z08BtzCt9mGweyw86YPg7tGF43ZJbj5m0v0-fy0Wb1m6_eXt9XjOrNCyDGrFakaBrKiYCk0DQdGhFVOmcIZC3UB3BWGFqUxpKSKyNpJwSmtWemc5I4v0d3su4_h6wBp1F04xOmRpBmVomAVFWpiiZllY0gpQqP30fcm_mhK9Kk83ek5jD6Vd0Kn8ibZwyyDKcHRQ9TJehgsOB_BjtoF_7_BL8SceyI</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Wong, S.</creator><creator>Shiell, T.B.</creator><creator>Cook, B.A.</creator><creator>Bradby, J.E.</creator><creator>McKenzie, D.R.</creator><creator>McCulloch, D.G.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201902</creationdate><title>The shear-driven transformation mechanism from glassy carbon to hexagonal diamond</title><author>Wong, S. ; Shiell, T.B. ; Cook, B.A. ; Bradby, J.E. ; McKenzie, D.R. ; McCulloch, D.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-b809f2e691ec1eff3e204c8d8a5daceb5e3d5a157aa071806bd64311b27dd63d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbon</topic><topic>Density</topic><topic>Diamond anvil cells</topic><topic>Diamonds</topic><topic>Glassy carbon</topic><topic>Graphitic structure</topic><topic>Hexagonal phase</topic><topic>Meteorite collisions</topic><topic>Meteorite craters</topic><topic>Microstructural analysis</topic><topic>Shear strain</topic><topic>Shear zone</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wong, S.</creatorcontrib><creatorcontrib>Shiell, T.B.</creatorcontrib><creatorcontrib>Cook, B.A.</creatorcontrib><creatorcontrib>Bradby, J.E.</creatorcontrib><creatorcontrib>McKenzie, D.R.</creatorcontrib><creatorcontrib>McCulloch, D.G.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wong, S.</au><au>Shiell, T.B.</au><au>Cook, B.A.</au><au>Bradby, J.E.</au><au>McKenzie, D.R.</au><au>McCulloch, D.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The shear-driven transformation mechanism from glassy carbon to hexagonal diamond</atitle><jtitle>Carbon (New York)</jtitle><date>2019-02</date><risdate>2019</risdate><volume>142</volume><spage>475</spage><epage>481</epage><pages>475-481</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Hexagonal diamond, a potentially superhard material, forms from a glassy carbon precursor at pressures of ∼100 GPa at the relatively low temperature of 400 °C. The formation mechanism of the hexagonal diamond phase was investigated by performing microstructural analysis on cross-sections of the recovered samples. Three distinct structures have been observed, a graphitic region near the centre of the sample with low density, a hexagonal diamond region at the edge of the sample with high density, and a mixed region containing significant proportions of both the graphitic structure and hexagonal diamond. The hexagonal diamond was more likely to occur at greater radial distance from the centre of the sample with some evidence for greater amounts also near the diamond anvil faces. The observed distribution of the hexagonal phase correlates well to regions of greatest shear strain expected from modelling studies of strain fields in diamond anvil cells. The findings support the proposition that shear strain plays an important role in the formation of hexagonal diamond, and that it may be a driving force for the natural occurrence of hexagonal diamond in the shear zone of meteorite impact craters. [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2018.10.080</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2019-02, Vol.142, p.475-481
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_journals_2164529148
source Elsevier ScienceDirect Journals
subjects Carbon
Density
Diamond anvil cells
Diamonds
Glassy carbon
Graphitic structure
Hexagonal phase
Meteorite collisions
Meteorite craters
Microstructural analysis
Shear strain
Shear zone
title The shear-driven transformation mechanism from glassy carbon to hexagonal diamond
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A04%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20shear-driven%20transformation%20mechanism%20from%20glassy%20carbon%20to%20hexagonal%20diamond&rft.jtitle=Carbon%20(New%20York)&rft.au=Wong,%20S.&rft.date=2019-02&rft.volume=142&rft.spage=475&rft.epage=481&rft.pages=475-481&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2018.10.080&rft_dat=%3Cproquest_cross%3E2164529148%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2164529148&rft_id=info:pmid/&rft_els_id=S0008622318309990&rfr_iscdi=true