The shear-driven transformation mechanism from glassy carbon to hexagonal diamond
Hexagonal diamond, a potentially superhard material, forms from a glassy carbon precursor at pressures of ∼100 GPa at the relatively low temperature of 400 °C. The formation mechanism of the hexagonal diamond phase was investigated by performing microstructural analysis on cross-sections of the reco...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2019-02, Vol.142, p.475-481 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 481 |
---|---|
container_issue | |
container_start_page | 475 |
container_title | Carbon (New York) |
container_volume | 142 |
creator | Wong, S. Shiell, T.B. Cook, B.A. Bradby, J.E. McKenzie, D.R. McCulloch, D.G. |
description | Hexagonal diamond, a potentially superhard material, forms from a glassy carbon precursor at pressures of ∼100 GPa at the relatively low temperature of 400 °C. The formation mechanism of the hexagonal diamond phase was investigated by performing microstructural analysis on cross-sections of the recovered samples. Three distinct structures have been observed, a graphitic region near the centre of the sample with low density, a hexagonal diamond region at the edge of the sample with high density, and a mixed region containing significant proportions of both the graphitic structure and hexagonal diamond. The hexagonal diamond was more likely to occur at greater radial distance from the centre of the sample with some evidence for greater amounts also near the diamond anvil faces. The observed distribution of the hexagonal phase correlates well to regions of greatest shear strain expected from modelling studies of strain fields in diamond anvil cells. The findings support the proposition that shear strain plays an important role in the formation of hexagonal diamond, and that it may be a driving force for the natural occurrence of hexagonal diamond in the shear zone of meteorite impact craters.
[Display omitted] |
doi_str_mv | 10.1016/j.carbon.2018.10.080 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2164529148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622318309990</els_id><sourcerecordid>2164529148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-b809f2e691ec1eff3e204c8d8a5daceb5e3d5a157aa071806bd64311b27dd63d3</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoPPAQ8t-araXoRZPELFkRYzyFNXrcp22ZNuov-e7vUs6fHG2bmvRmEbinJKaHyvsutiXUYckaomqCcKHKGFlSVPOOqoudoQQhRmWSMX6KrlLppFYqKBfrYtIBTCyZmLvojDHiMZkhNiL0ZfRhwD7Y1g089bmLo8XZnUvrB8z08BtzCt9mGweyw86YPg7tGF43ZJbj5m0v0-fy0Wb1m6_eXt9XjOrNCyDGrFakaBrKiYCk0DQdGhFVOmcIZC3UB3BWGFqUxpKSKyNpJwSmtWemc5I4v0d3su4_h6wBp1F04xOmRpBmVomAVFWpiiZllY0gpQqP30fcm_mhK9Kk83ek5jD6Vd0Kn8ibZwyyDKcHRQ9TJehgsOB_BjtoF_7_BL8SceyI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2164529148</pqid></control><display><type>article</type><title>The shear-driven transformation mechanism from glassy carbon to hexagonal diamond</title><source>Elsevier ScienceDirect Journals</source><creator>Wong, S. ; Shiell, T.B. ; Cook, B.A. ; Bradby, J.E. ; McKenzie, D.R. ; McCulloch, D.G.</creator><creatorcontrib>Wong, S. ; Shiell, T.B. ; Cook, B.A. ; Bradby, J.E. ; McKenzie, D.R. ; McCulloch, D.G.</creatorcontrib><description>Hexagonal diamond, a potentially superhard material, forms from a glassy carbon precursor at pressures of ∼100 GPa at the relatively low temperature of 400 °C. The formation mechanism of the hexagonal diamond phase was investigated by performing microstructural analysis on cross-sections of the recovered samples. Three distinct structures have been observed, a graphitic region near the centre of the sample with low density, a hexagonal diamond region at the edge of the sample with high density, and a mixed region containing significant proportions of both the graphitic structure and hexagonal diamond. The hexagonal diamond was more likely to occur at greater radial distance from the centre of the sample with some evidence for greater amounts also near the diamond anvil faces. The observed distribution of the hexagonal phase correlates well to regions of greatest shear strain expected from modelling studies of strain fields in diamond anvil cells. The findings support the proposition that shear strain plays an important role in the formation of hexagonal diamond, and that it may be a driving force for the natural occurrence of hexagonal diamond in the shear zone of meteorite impact craters.
[Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2018.10.080</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Carbon ; Density ; Diamond anvil cells ; Diamonds ; Glassy carbon ; Graphitic structure ; Hexagonal phase ; Meteorite collisions ; Meteorite craters ; Microstructural analysis ; Shear strain ; Shear zone</subject><ispartof>Carbon (New York), 2019-02, Vol.142, p.475-481</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-b809f2e691ec1eff3e204c8d8a5daceb5e3d5a157aa071806bd64311b27dd63d3</citedby><cites>FETCH-LOGICAL-c446t-b809f2e691ec1eff3e204c8d8a5daceb5e3d5a157aa071806bd64311b27dd63d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0008622318309990$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Wong, S.</creatorcontrib><creatorcontrib>Shiell, T.B.</creatorcontrib><creatorcontrib>Cook, B.A.</creatorcontrib><creatorcontrib>Bradby, J.E.</creatorcontrib><creatorcontrib>McKenzie, D.R.</creatorcontrib><creatorcontrib>McCulloch, D.G.</creatorcontrib><title>The shear-driven transformation mechanism from glassy carbon to hexagonal diamond</title><title>Carbon (New York)</title><description>Hexagonal diamond, a potentially superhard material, forms from a glassy carbon precursor at pressures of ∼100 GPa at the relatively low temperature of 400 °C. The formation mechanism of the hexagonal diamond phase was investigated by performing microstructural analysis on cross-sections of the recovered samples. Three distinct structures have been observed, a graphitic region near the centre of the sample with low density, a hexagonal diamond region at the edge of the sample with high density, and a mixed region containing significant proportions of both the graphitic structure and hexagonal diamond. The hexagonal diamond was more likely to occur at greater radial distance from the centre of the sample with some evidence for greater amounts also near the diamond anvil faces. The observed distribution of the hexagonal phase correlates well to regions of greatest shear strain expected from modelling studies of strain fields in diamond anvil cells. The findings support the proposition that shear strain plays an important role in the formation of hexagonal diamond, and that it may be a driving force for the natural occurrence of hexagonal diamond in the shear zone of meteorite impact craters.
[Display omitted]</description><subject>Carbon</subject><subject>Density</subject><subject>Diamond anvil cells</subject><subject>Diamonds</subject><subject>Glassy carbon</subject><subject>Graphitic structure</subject><subject>Hexagonal phase</subject><subject>Meteorite collisions</subject><subject>Meteorite craters</subject><subject>Microstructural analysis</subject><subject>Shear strain</subject><subject>Shear zone</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLguvoPPAQ8t-araXoRZPELFkRYzyFNXrcp22ZNuov-e7vUs6fHG2bmvRmEbinJKaHyvsutiXUYckaomqCcKHKGFlSVPOOqoudoQQhRmWSMX6KrlLppFYqKBfrYtIBTCyZmLvojDHiMZkhNiL0ZfRhwD7Y1g089bmLo8XZnUvrB8z08BtzCt9mGweyw86YPg7tGF43ZJbj5m0v0-fy0Wb1m6_eXt9XjOrNCyDGrFakaBrKiYCk0DQdGhFVOmcIZC3UB3BWGFqUxpKSKyNpJwSmtWemc5I4v0d3su4_h6wBp1F04xOmRpBmVomAVFWpiiZllY0gpQqP30fcm_mhK9Kk83ek5jD6Vd0Kn8ibZwyyDKcHRQ9TJehgsOB_BjtoF_7_BL8SceyI</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Wong, S.</creator><creator>Shiell, T.B.</creator><creator>Cook, B.A.</creator><creator>Bradby, J.E.</creator><creator>McKenzie, D.R.</creator><creator>McCulloch, D.G.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201902</creationdate><title>The shear-driven transformation mechanism from glassy carbon to hexagonal diamond</title><author>Wong, S. ; Shiell, T.B. ; Cook, B.A. ; Bradby, J.E. ; McKenzie, D.R. ; McCulloch, D.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-b809f2e691ec1eff3e204c8d8a5daceb5e3d5a157aa071806bd64311b27dd63d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbon</topic><topic>Density</topic><topic>Diamond anvil cells</topic><topic>Diamonds</topic><topic>Glassy carbon</topic><topic>Graphitic structure</topic><topic>Hexagonal phase</topic><topic>Meteorite collisions</topic><topic>Meteorite craters</topic><topic>Microstructural analysis</topic><topic>Shear strain</topic><topic>Shear zone</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wong, S.</creatorcontrib><creatorcontrib>Shiell, T.B.</creatorcontrib><creatorcontrib>Cook, B.A.</creatorcontrib><creatorcontrib>Bradby, J.E.</creatorcontrib><creatorcontrib>McKenzie, D.R.</creatorcontrib><creatorcontrib>McCulloch, D.G.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wong, S.</au><au>Shiell, T.B.</au><au>Cook, B.A.</au><au>Bradby, J.E.</au><au>McKenzie, D.R.</au><au>McCulloch, D.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The shear-driven transformation mechanism from glassy carbon to hexagonal diamond</atitle><jtitle>Carbon (New York)</jtitle><date>2019-02</date><risdate>2019</risdate><volume>142</volume><spage>475</spage><epage>481</epage><pages>475-481</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Hexagonal diamond, a potentially superhard material, forms from a glassy carbon precursor at pressures of ∼100 GPa at the relatively low temperature of 400 °C. The formation mechanism of the hexagonal diamond phase was investigated by performing microstructural analysis on cross-sections of the recovered samples. Three distinct structures have been observed, a graphitic region near the centre of the sample with low density, a hexagonal diamond region at the edge of the sample with high density, and a mixed region containing significant proportions of both the graphitic structure and hexagonal diamond. The hexagonal diamond was more likely to occur at greater radial distance from the centre of the sample with some evidence for greater amounts also near the diamond anvil faces. The observed distribution of the hexagonal phase correlates well to regions of greatest shear strain expected from modelling studies of strain fields in diamond anvil cells. The findings support the proposition that shear strain plays an important role in the formation of hexagonal diamond, and that it may be a driving force for the natural occurrence of hexagonal diamond in the shear zone of meteorite impact craters.
[Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2018.10.080</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6223 |
ispartof | Carbon (New York), 2019-02, Vol.142, p.475-481 |
issn | 0008-6223 1873-3891 |
language | eng |
recordid | cdi_proquest_journals_2164529148 |
source | Elsevier ScienceDirect Journals |
subjects | Carbon Density Diamond anvil cells Diamonds Glassy carbon Graphitic structure Hexagonal phase Meteorite collisions Meteorite craters Microstructural analysis Shear strain Shear zone |
title | The shear-driven transformation mechanism from glassy carbon to hexagonal diamond |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A04%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20shear-driven%20transformation%20mechanism%20from%20glassy%20carbon%20to%20hexagonal%20diamond&rft.jtitle=Carbon%20(New%20York)&rft.au=Wong,%20S.&rft.date=2019-02&rft.volume=142&rft.spage=475&rft.epage=481&rft.pages=475-481&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2018.10.080&rft_dat=%3Cproquest_cross%3E2164529148%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2164529148&rft_id=info:pmid/&rft_els_id=S0008622318309990&rfr_iscdi=true |