The interplay between multiple toughening mechanisms in nanocomposites with spatially distributed and oriented carbon nanotubes as revealed by dual-scale simulations

The success of carbon nanotubes (CNTs) in increasing toughness of polymers and their composites is often attributed to the additional energy consumed by CNT debonding and pull out. In this work we demonstrate that this mechanism alone can only lead to modest improvements in toughness and that the tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2019-02, Vol.142, p.141-149
Hauptverfasser: Liu, Qiang, Lomov, Stepan V., Gorbatikh, Larissa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 149
container_issue
container_start_page 141
container_title Carbon (New York)
container_volume 142
creator Liu, Qiang
Lomov, Stepan V.
Gorbatikh, Larissa
description The success of carbon nanotubes (CNTs) in increasing toughness of polymers and their composites is often attributed to the additional energy consumed by CNT debonding and pull out. In this work we demonstrate that this mechanism alone can only lead to modest improvements in toughness and that the true toughening power of CNTs lies in activation of multiple mechanisms. Our virtual experiments reveal three mechanisms: 1) suppression of stress concentrations leading to delay in damage initiation, 2) damage diffusion/crack branching and 3) CNT debonding and pull-out. The first two mechanisms dominate energy dissipation although they have received less attention in the literature. These mechanisms act concurrently at different scales and have complex dependence on the morphology of the CNT network and properties of the CNT/matrix interface. When CNTs' position, orientation and compatibility with polymer are optimised, the strength and toughness of the nanocomposite can be increased significantly (in the studied case by 90% and 277%, respectively, compared to unfilled polymer). Without morphological optimisation these improvements were only 6% and 14%, respectively. Thus, for strengthening and toughening of nanocomposite structures, it is insufficient to only modify the interface, one also needs to optimise CNTs’ spatial distribution and orientation. [Display omitted]
doi_str_mv 10.1016/j.carbon.2018.10.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2164529014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622318309187</els_id><sourcerecordid>2164529014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-9749735ad18863b518c8ff1d233af3651161dcb1b2b6f8f57cebfaf4db05664e3</originalsourceid><addsrcrecordid>eNp9kctuFDEQRS0EEkPgD7KwxLoHV7sfnk0kFEFAisQmrC0_yhmPuu2O7U40H8R_xkOzZmXdcp3rKl9CroHtgcHw5bQ3KukY9i0DUUt7xvo3ZAdi5A0XB3hLdowx0Qxty9-TDzmfquwEdDvy5-GI1IeCaZnUmWosL4iBzutU_DIhLXF9PGLw4ZHOaI4q-DznCtCgQjRxXmL2BTN98eVI86KKV9N0ptbnkrxeC1qqgqUxeQwXsQ36ly6rrqDKNOEzqqle6gquamqyqZJmX6eohjHkj-SdU1PGT__OK_L7-7eH2x_N_a-7n7df7xvDRyjNYewOI--VBSEGrnsQRjgHtuVcOT70AANYo0G3enDC9aNB7ZTrrGb9MHTIr8jnzXdJ8WnFXOQprinUJ2ULQ9e3BwZd7eq2LpNizgmdXJKfVTpLYPISiDzJbU95CeRSrYFU7GbDsG7w7DHJbOqvGLQ-oSnSRv9_g1c-VJtp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2164529014</pqid></control><display><type>article</type><title>The interplay between multiple toughening mechanisms in nanocomposites with spatially distributed and oriented carbon nanotubes as revealed by dual-scale simulations</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Liu, Qiang ; Lomov, Stepan V. ; Gorbatikh, Larissa</creator><creatorcontrib>Liu, Qiang ; Lomov, Stepan V. ; Gorbatikh, Larissa</creatorcontrib><description>The success of carbon nanotubes (CNTs) in increasing toughness of polymers and their composites is often attributed to the additional energy consumed by CNT debonding and pull out. In this work we demonstrate that this mechanism alone can only lead to modest improvements in toughness and that the true toughening power of CNTs lies in activation of multiple mechanisms. Our virtual experiments reveal three mechanisms: 1) suppression of stress concentrations leading to delay in damage initiation, 2) damage diffusion/crack branching and 3) CNT debonding and pull-out. The first two mechanisms dominate energy dissipation although they have received less attention in the literature. These mechanisms act concurrently at different scales and have complex dependence on the morphology of the CNT network and properties of the CNT/matrix interface. When CNTs' position, orientation and compatibility with polymer are optimised, the strength and toughness of the nanocomposite can be increased significantly (in the studied case by 90% and 277%, respectively, compared to unfilled polymer). Without morphological optimisation these improvements were only 6% and 14%, respectively. Thus, for strengthening and toughening of nanocomposite structures, it is insufficient to only modify the interface, one also needs to optimise CNTs’ spatial distribution and orientation. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2018.10.005</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Carbon nanotubes ; Crack initiation ; Damage ; Debonding ; Dependence ; Diffusion ; Energy dissipation ; Fracture mechanics ; Fracture toughness ; Morphology ; Nanocomposites ; Nanotubes ; Polymer matrix composites ; Polymers ; Spatial distribution ; Toughening</subject><ispartof>Carbon (New York), 2019-02, Vol.142, p.141-149</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-9749735ad18863b518c8ff1d233af3651161dcb1b2b6f8f57cebfaf4db05664e3</citedby><cites>FETCH-LOGICAL-c371t-9749735ad18863b518c8ff1d233af3651161dcb1b2b6f8f57cebfaf4db05664e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0008622318309187$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Liu, Qiang</creatorcontrib><creatorcontrib>Lomov, Stepan V.</creatorcontrib><creatorcontrib>Gorbatikh, Larissa</creatorcontrib><title>The interplay between multiple toughening mechanisms in nanocomposites with spatially distributed and oriented carbon nanotubes as revealed by dual-scale simulations</title><title>Carbon (New York)</title><description>The success of carbon nanotubes (CNTs) in increasing toughness of polymers and their composites is often attributed to the additional energy consumed by CNT debonding and pull out. In this work we demonstrate that this mechanism alone can only lead to modest improvements in toughness and that the true toughening power of CNTs lies in activation of multiple mechanisms. Our virtual experiments reveal three mechanisms: 1) suppression of stress concentrations leading to delay in damage initiation, 2) damage diffusion/crack branching and 3) CNT debonding and pull-out. The first two mechanisms dominate energy dissipation although they have received less attention in the literature. These mechanisms act concurrently at different scales and have complex dependence on the morphology of the CNT network and properties of the CNT/matrix interface. When CNTs' position, orientation and compatibility with polymer are optimised, the strength and toughness of the nanocomposite can be increased significantly (in the studied case by 90% and 277%, respectively, compared to unfilled polymer). Without morphological optimisation these improvements were only 6% and 14%, respectively. Thus, for strengthening and toughening of nanocomposite structures, it is insufficient to only modify the interface, one also needs to optimise CNTs’ spatial distribution and orientation. [Display omitted]</description><subject>Carbon nanotubes</subject><subject>Crack initiation</subject><subject>Damage</subject><subject>Debonding</subject><subject>Dependence</subject><subject>Diffusion</subject><subject>Energy dissipation</subject><subject>Fracture mechanics</subject><subject>Fracture toughness</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Nanotubes</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Spatial distribution</subject><subject>Toughening</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kctuFDEQRS0EEkPgD7KwxLoHV7sfnk0kFEFAisQmrC0_yhmPuu2O7U40H8R_xkOzZmXdcp3rKl9CroHtgcHw5bQ3KukY9i0DUUt7xvo3ZAdi5A0XB3hLdowx0Qxty9-TDzmfquwEdDvy5-GI1IeCaZnUmWosL4iBzutU_DIhLXF9PGLw4ZHOaI4q-DznCtCgQjRxXmL2BTN98eVI86KKV9N0ptbnkrxeC1qqgqUxeQwXsQ36ly6rrqDKNOEzqqle6gquamqyqZJmX6eohjHkj-SdU1PGT__OK_L7-7eH2x_N_a-7n7df7xvDRyjNYewOI--VBSEGrnsQRjgHtuVcOT70AANYo0G3enDC9aNB7ZTrrGb9MHTIr8jnzXdJ8WnFXOQprinUJ2ULQ9e3BwZd7eq2LpNizgmdXJKfVTpLYPISiDzJbU95CeRSrYFU7GbDsG7w7DHJbOqvGLQ-oSnSRv9_g1c-VJtp</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Liu, Qiang</creator><creator>Lomov, Stepan V.</creator><creator>Gorbatikh, Larissa</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20190201</creationdate><title>The interplay between multiple toughening mechanisms in nanocomposites with spatially distributed and oriented carbon nanotubes as revealed by dual-scale simulations</title><author>Liu, Qiang ; Lomov, Stepan V. ; Gorbatikh, Larissa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-9749735ad18863b518c8ff1d233af3651161dcb1b2b6f8f57cebfaf4db05664e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbon nanotubes</topic><topic>Crack initiation</topic><topic>Damage</topic><topic>Debonding</topic><topic>Dependence</topic><topic>Diffusion</topic><topic>Energy dissipation</topic><topic>Fracture mechanics</topic><topic>Fracture toughness</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Nanotubes</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Spatial distribution</topic><topic>Toughening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Qiang</creatorcontrib><creatorcontrib>Lomov, Stepan V.</creatorcontrib><creatorcontrib>Gorbatikh, Larissa</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Qiang</au><au>Lomov, Stepan V.</au><au>Gorbatikh, Larissa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The interplay between multiple toughening mechanisms in nanocomposites with spatially distributed and oriented carbon nanotubes as revealed by dual-scale simulations</atitle><jtitle>Carbon (New York)</jtitle><date>2019-02-01</date><risdate>2019</risdate><volume>142</volume><spage>141</spage><epage>149</epage><pages>141-149</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>The success of carbon nanotubes (CNTs) in increasing toughness of polymers and their composites is often attributed to the additional energy consumed by CNT debonding and pull out. In this work we demonstrate that this mechanism alone can only lead to modest improvements in toughness and that the true toughening power of CNTs lies in activation of multiple mechanisms. Our virtual experiments reveal three mechanisms: 1) suppression of stress concentrations leading to delay in damage initiation, 2) damage diffusion/crack branching and 3) CNT debonding and pull-out. The first two mechanisms dominate energy dissipation although they have received less attention in the literature. These mechanisms act concurrently at different scales and have complex dependence on the morphology of the CNT network and properties of the CNT/matrix interface. When CNTs' position, orientation and compatibility with polymer are optimised, the strength and toughness of the nanocomposite can be increased significantly (in the studied case by 90% and 277%, respectively, compared to unfilled polymer). Without morphological optimisation these improvements were only 6% and 14%, respectively. Thus, for strengthening and toughening of nanocomposite structures, it is insufficient to only modify the interface, one also needs to optimise CNTs’ spatial distribution and orientation. [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2018.10.005</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2019-02, Vol.142, p.141-149
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_journals_2164529014
source Elsevier ScienceDirect Journals Complete
subjects Carbon nanotubes
Crack initiation
Damage
Debonding
Dependence
Diffusion
Energy dissipation
Fracture mechanics
Fracture toughness
Morphology
Nanocomposites
Nanotubes
Polymer matrix composites
Polymers
Spatial distribution
Toughening
title The interplay between multiple toughening mechanisms in nanocomposites with spatially distributed and oriented carbon nanotubes as revealed by dual-scale simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T11%3A54%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20interplay%20between%20multiple%20toughening%20mechanisms%20in%20nanocomposites%20with%20spatially%20distributed%20and%20oriented%20carbon%20nanotubes%20as%20revealed%20by%20dual-scale%20simulations&rft.jtitle=Carbon%20(New%20York)&rft.au=Liu,%20Qiang&rft.date=2019-02-01&rft.volume=142&rft.spage=141&rft.epage=149&rft.pages=141-149&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2018.10.005&rft_dat=%3Cproquest_cross%3E2164529014%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2164529014&rft_id=info:pmid/&rft_els_id=S0008622318309187&rfr_iscdi=true