Mechanics of viscoelastic functionally graded microcantilevers

An elastically supported viscoelastic functionally graded (FG) microcantilever is considered and its nonlinear mechanics is analysed for the first time. Moreover, for the first time, energy transfer via internal resonances and motion complexity are analysed. A nonlinear spring model is incorporated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of mechanics, A, Solids A, Solids, 2019-01, Vol.73, p.492-499
1. Verfasser: Ghayesh, Mergen H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 499
container_issue
container_start_page 492
container_title European journal of mechanics, A, Solids
container_volume 73
creator Ghayesh, Mergen H.
description An elastically supported viscoelastic functionally graded (FG) microcantilever is considered and its nonlinear mechanics is analysed for the first time. Moreover, for the first time, energy transfer via internal resonances and motion complexity are analysed. A nonlinear spring model is incorporated as an elastic support which is representative of elasticity induced from neighbouring devices. Size effects are incorporated using the modified couple stress theory (MCST). Mori-Tanaka formula is utilised for FG-material-property variations. Kinematics/kinetics for an infinitesimal beam elements in conjunction with Hamilton's method are used for large curvatures. Galerkin's technique is used for reductions and truncations of the dynamic model of elastically supported viscoelastic FG microsystem. Both base-excitation/frequency continuations are performed and the dynamics is investigated. •Large deformations soften the motion.•Three-to-one internal resonance occurs.•Number of saddle bifurcations is either two or four.•Internal resonance makes the motion complex.
doi_str_mv 10.1016/j.euromechsol.2018.09.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2164523001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0997753818305023</els_id><sourcerecordid>2164523001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-8bc287927522da7524deb0510b4c51901c6d3a75ed82d947947d4a163419f6e83</originalsourceid><addsrcrecordid>eNqNUE1LxDAUDKLguvofKp5bX9KPJBdBFr9gxYueQzZ51ZRusybtwv57s9SDR-HxHjxmhpkh5JpCQYE2t12BU_BbNF_R9wUDKgqQBQA9IQsqeJlzJupTsgApec7rUpyTixg7AGDA6ILcvSaqHpyJmW-zvYvGY6_j6EzWToMZnR903x-yz6At2mzrTPBGD6PrcY8hXpKzVvcRr37vknw8PryvnvP129PL6n6dm7KSYy42hgkuGa8ZszrtyuIGagqbytRUAjWNLdMfrWBWVjyNrTRtyorKtkFRLsnNrLsL_nvCOKrOTyFZi4rRpqpZmSInlJxRyWSMAVu1C26rw0FRUMe6VKf-1KWOdSmQauauZi6mGHuHQUXjcDBoXUAzKuvdP1R-APmdeXo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2164523001</pqid></control><display><type>article</type><title>Mechanics of viscoelastic functionally graded microcantilevers</title><source>Access via ScienceDirect (Elsevier)</source><creator>Ghayesh, Mergen H.</creator><creatorcontrib>Ghayesh, Mergen H.</creatorcontrib><description>An elastically supported viscoelastic functionally graded (FG) microcantilever is considered and its nonlinear mechanics is analysed for the first time. Moreover, for the first time, energy transfer via internal resonances and motion complexity are analysed. A nonlinear spring model is incorporated as an elastic support which is representative of elasticity induced from neighbouring devices. Size effects are incorporated using the modified couple stress theory (MCST). Mori-Tanaka formula is utilised for FG-material-property variations. Kinematics/kinetics for an infinitesimal beam elements in conjunction with Hamilton's method are used for large curvatures. Galerkin's technique is used for reductions and truncations of the dynamic model of elastically supported viscoelastic FG microsystem. Both base-excitation/frequency continuations are performed and the dynamics is investigated. •Large deformations soften the motion.•Three-to-one internal resonance occurs.•Number of saddle bifurcations is either two or four.•Internal resonance makes the motion complex.</description><identifier>ISSN: 0997-7538</identifier><identifier>EISSN: 1873-7285</identifier><identifier>DOI: 10.1016/j.euromechsol.2018.09.001</identifier><language>eng</language><publisher>Berlin: Elsevier Masson SAS</publisher><subject>Dynamic models ; Elastic supports ; Elastically supported ; Elasticity ; Energy transfer ; Functionally graded ; Functionally gradient materials ; Galerkin method ; Internal resonance ; Kinematics ; Materials elasticity ; Mechanics ; Mechanics (physics) ; Microcantilever ; Nonlinear ; Nonlinear analysis ; Numerical analysis ; Size effects ; Stress state ; Viscoelasticity ; Viscosity</subject><ispartof>European journal of mechanics, A, Solids, 2019-01, Vol.73, p.492-499</ispartof><rights>2018 Elsevier Masson SAS</rights><rights>Copyright Elsevier BV Jan/Feb 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-8bc287927522da7524deb0510b4c51901c6d3a75ed82d947947d4a163419f6e83</citedby><cites>FETCH-LOGICAL-c349t-8bc287927522da7524deb0510b4c51901c6d3a75ed82d947947d4a163419f6e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.euromechsol.2018.09.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Ghayesh, Mergen H.</creatorcontrib><title>Mechanics of viscoelastic functionally graded microcantilevers</title><title>European journal of mechanics, A, Solids</title><description>An elastically supported viscoelastic functionally graded (FG) microcantilever is considered and its nonlinear mechanics is analysed for the first time. Moreover, for the first time, energy transfer via internal resonances and motion complexity are analysed. A nonlinear spring model is incorporated as an elastic support which is representative of elasticity induced from neighbouring devices. Size effects are incorporated using the modified couple stress theory (MCST). Mori-Tanaka formula is utilised for FG-material-property variations. Kinematics/kinetics for an infinitesimal beam elements in conjunction with Hamilton's method are used for large curvatures. Galerkin's technique is used for reductions and truncations of the dynamic model of elastically supported viscoelastic FG microsystem. Both base-excitation/frequency continuations are performed and the dynamics is investigated. •Large deformations soften the motion.•Three-to-one internal resonance occurs.•Number of saddle bifurcations is either two or four.•Internal resonance makes the motion complex.</description><subject>Dynamic models</subject><subject>Elastic supports</subject><subject>Elastically supported</subject><subject>Elasticity</subject><subject>Energy transfer</subject><subject>Functionally graded</subject><subject>Functionally gradient materials</subject><subject>Galerkin method</subject><subject>Internal resonance</subject><subject>Kinematics</subject><subject>Materials elasticity</subject><subject>Mechanics</subject><subject>Mechanics (physics)</subject><subject>Microcantilever</subject><subject>Nonlinear</subject><subject>Nonlinear analysis</subject><subject>Numerical analysis</subject><subject>Size effects</subject><subject>Stress state</subject><subject>Viscoelasticity</subject><subject>Viscosity</subject><issn>0997-7538</issn><issn>1873-7285</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNUE1LxDAUDKLguvofKp5bX9KPJBdBFr9gxYueQzZ51ZRusybtwv57s9SDR-HxHjxmhpkh5JpCQYE2t12BU_BbNF_R9wUDKgqQBQA9IQsqeJlzJupTsgApec7rUpyTixg7AGDA6ILcvSaqHpyJmW-zvYvGY6_j6EzWToMZnR903x-yz6At2mzrTPBGD6PrcY8hXpKzVvcRr37vknw8PryvnvP129PL6n6dm7KSYy42hgkuGa8ZszrtyuIGagqbytRUAjWNLdMfrWBWVjyNrTRtyorKtkFRLsnNrLsL_nvCOKrOTyFZi4rRpqpZmSInlJxRyWSMAVu1C26rw0FRUMe6VKf-1KWOdSmQauauZi6mGHuHQUXjcDBoXUAzKuvdP1R-APmdeXo</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Ghayesh, Mergen H.</creator><general>Elsevier Masson SAS</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>201901</creationdate><title>Mechanics of viscoelastic functionally graded microcantilevers</title><author>Ghayesh, Mergen H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-8bc287927522da7524deb0510b4c51901c6d3a75ed82d947947d4a163419f6e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Dynamic models</topic><topic>Elastic supports</topic><topic>Elastically supported</topic><topic>Elasticity</topic><topic>Energy transfer</topic><topic>Functionally graded</topic><topic>Functionally gradient materials</topic><topic>Galerkin method</topic><topic>Internal resonance</topic><topic>Kinematics</topic><topic>Materials elasticity</topic><topic>Mechanics</topic><topic>Mechanics (physics)</topic><topic>Microcantilever</topic><topic>Nonlinear</topic><topic>Nonlinear analysis</topic><topic>Numerical analysis</topic><topic>Size effects</topic><topic>Stress state</topic><topic>Viscoelasticity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghayesh, Mergen H.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>European journal of mechanics, A, Solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghayesh, Mergen H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanics of viscoelastic functionally graded microcantilevers</atitle><jtitle>European journal of mechanics, A, Solids</jtitle><date>2019-01</date><risdate>2019</risdate><volume>73</volume><spage>492</spage><epage>499</epage><pages>492-499</pages><issn>0997-7538</issn><eissn>1873-7285</eissn><abstract>An elastically supported viscoelastic functionally graded (FG) microcantilever is considered and its nonlinear mechanics is analysed for the first time. Moreover, for the first time, energy transfer via internal resonances and motion complexity are analysed. A nonlinear spring model is incorporated as an elastic support which is representative of elasticity induced from neighbouring devices. Size effects are incorporated using the modified couple stress theory (MCST). Mori-Tanaka formula is utilised for FG-material-property variations. Kinematics/kinetics for an infinitesimal beam elements in conjunction with Hamilton's method are used for large curvatures. Galerkin's technique is used for reductions and truncations of the dynamic model of elastically supported viscoelastic FG microsystem. Both base-excitation/frequency continuations are performed and the dynamics is investigated. •Large deformations soften the motion.•Three-to-one internal resonance occurs.•Number of saddle bifurcations is either two or four.•Internal resonance makes the motion complex.</abstract><cop>Berlin</cop><pub>Elsevier Masson SAS</pub><doi>10.1016/j.euromechsol.2018.09.001</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0997-7538
ispartof European journal of mechanics, A, Solids, 2019-01, Vol.73, p.492-499
issn 0997-7538
1873-7285
language eng
recordid cdi_proquest_journals_2164523001
source Access via ScienceDirect (Elsevier)
subjects Dynamic models
Elastic supports
Elastically supported
Elasticity
Energy transfer
Functionally graded
Functionally gradient materials
Galerkin method
Internal resonance
Kinematics
Materials elasticity
Mechanics
Mechanics (physics)
Microcantilever
Nonlinear
Nonlinear analysis
Numerical analysis
Size effects
Stress state
Viscoelasticity
Viscosity
title Mechanics of viscoelastic functionally graded microcantilevers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A55%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanics%20of%20viscoelastic%20functionally%20graded%20microcantilevers&rft.jtitle=European%20journal%20of%20mechanics,%20A,%20Solids&rft.au=Ghayesh,%20Mergen%20H.&rft.date=2019-01&rft.volume=73&rft.spage=492&rft.epage=499&rft.pages=492-499&rft.issn=0997-7538&rft.eissn=1873-7285&rft_id=info:doi/10.1016/j.euromechsol.2018.09.001&rft_dat=%3Cproquest_cross%3E2164523001%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2164523001&rft_id=info:pmid/&rft_els_id=S0997753818305023&rfr_iscdi=true