Mechanics of viscoelastic functionally graded microcantilevers
An elastically supported viscoelastic functionally graded (FG) microcantilever is considered and its nonlinear mechanics is analysed for the first time. Moreover, for the first time, energy transfer via internal resonances and motion complexity are analysed. A nonlinear spring model is incorporated...
Gespeichert in:
Veröffentlicht in: | European journal of mechanics, A, Solids A, Solids, 2019-01, Vol.73, p.492-499 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 499 |
---|---|
container_issue | |
container_start_page | 492 |
container_title | European journal of mechanics, A, Solids |
container_volume | 73 |
creator | Ghayesh, Mergen H. |
description | An elastically supported viscoelastic functionally graded (FG) microcantilever is considered and its nonlinear mechanics is analysed for the first time. Moreover, for the first time, energy transfer via internal resonances and motion complexity are analysed. A nonlinear spring model is incorporated as an elastic support which is representative of elasticity induced from neighbouring devices. Size effects are incorporated using the modified couple stress theory (MCST). Mori-Tanaka formula is utilised for FG-material-property variations. Kinematics/kinetics for an infinitesimal beam elements in conjunction with Hamilton's method are used for large curvatures. Galerkin's technique is used for reductions and truncations of the dynamic model of elastically supported viscoelastic FG microsystem. Both base-excitation/frequency continuations are performed and the dynamics is investigated.
•Large deformations soften the motion.•Three-to-one internal resonance occurs.•Number of saddle bifurcations is either two or four.•Internal resonance makes the motion complex. |
doi_str_mv | 10.1016/j.euromechsol.2018.09.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2164523001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0997753818305023</els_id><sourcerecordid>2164523001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-8bc287927522da7524deb0510b4c51901c6d3a75ed82d947947d4a163419f6e83</originalsourceid><addsrcrecordid>eNqNUE1LxDAUDKLguvofKp5bX9KPJBdBFr9gxYueQzZ51ZRusybtwv57s9SDR-HxHjxmhpkh5JpCQYE2t12BU_BbNF_R9wUDKgqQBQA9IQsqeJlzJupTsgApec7rUpyTixg7AGDA6ILcvSaqHpyJmW-zvYvGY6_j6EzWToMZnR903x-yz6At2mzrTPBGD6PrcY8hXpKzVvcRr37vknw8PryvnvP129PL6n6dm7KSYy42hgkuGa8ZszrtyuIGagqbytRUAjWNLdMfrWBWVjyNrTRtyorKtkFRLsnNrLsL_nvCOKrOTyFZi4rRpqpZmSInlJxRyWSMAVu1C26rw0FRUMe6VKf-1KWOdSmQauauZi6mGHuHQUXjcDBoXUAzKuvdP1R-APmdeXo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2164523001</pqid></control><display><type>article</type><title>Mechanics of viscoelastic functionally graded microcantilevers</title><source>Access via ScienceDirect (Elsevier)</source><creator>Ghayesh, Mergen H.</creator><creatorcontrib>Ghayesh, Mergen H.</creatorcontrib><description>An elastically supported viscoelastic functionally graded (FG) microcantilever is considered and its nonlinear mechanics is analysed for the first time. Moreover, for the first time, energy transfer via internal resonances and motion complexity are analysed. A nonlinear spring model is incorporated as an elastic support which is representative of elasticity induced from neighbouring devices. Size effects are incorporated using the modified couple stress theory (MCST). Mori-Tanaka formula is utilised for FG-material-property variations. Kinematics/kinetics for an infinitesimal beam elements in conjunction with Hamilton's method are used for large curvatures. Galerkin's technique is used for reductions and truncations of the dynamic model of elastically supported viscoelastic FG microsystem. Both base-excitation/frequency continuations are performed and the dynamics is investigated.
•Large deformations soften the motion.•Three-to-one internal resonance occurs.•Number of saddle bifurcations is either two or four.•Internal resonance makes the motion complex.</description><identifier>ISSN: 0997-7538</identifier><identifier>EISSN: 1873-7285</identifier><identifier>DOI: 10.1016/j.euromechsol.2018.09.001</identifier><language>eng</language><publisher>Berlin: Elsevier Masson SAS</publisher><subject>Dynamic models ; Elastic supports ; Elastically supported ; Elasticity ; Energy transfer ; Functionally graded ; Functionally gradient materials ; Galerkin method ; Internal resonance ; Kinematics ; Materials elasticity ; Mechanics ; Mechanics (physics) ; Microcantilever ; Nonlinear ; Nonlinear analysis ; Numerical analysis ; Size effects ; Stress state ; Viscoelasticity ; Viscosity</subject><ispartof>European journal of mechanics, A, Solids, 2019-01, Vol.73, p.492-499</ispartof><rights>2018 Elsevier Masson SAS</rights><rights>Copyright Elsevier BV Jan/Feb 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-8bc287927522da7524deb0510b4c51901c6d3a75ed82d947947d4a163419f6e83</citedby><cites>FETCH-LOGICAL-c349t-8bc287927522da7524deb0510b4c51901c6d3a75ed82d947947d4a163419f6e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.euromechsol.2018.09.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Ghayesh, Mergen H.</creatorcontrib><title>Mechanics of viscoelastic functionally graded microcantilevers</title><title>European journal of mechanics, A, Solids</title><description>An elastically supported viscoelastic functionally graded (FG) microcantilever is considered and its nonlinear mechanics is analysed for the first time. Moreover, for the first time, energy transfer via internal resonances and motion complexity are analysed. A nonlinear spring model is incorporated as an elastic support which is representative of elasticity induced from neighbouring devices. Size effects are incorporated using the modified couple stress theory (MCST). Mori-Tanaka formula is utilised for FG-material-property variations. Kinematics/kinetics for an infinitesimal beam elements in conjunction with Hamilton's method are used for large curvatures. Galerkin's technique is used for reductions and truncations of the dynamic model of elastically supported viscoelastic FG microsystem. Both base-excitation/frequency continuations are performed and the dynamics is investigated.
•Large deformations soften the motion.•Three-to-one internal resonance occurs.•Number of saddle bifurcations is either two or four.•Internal resonance makes the motion complex.</description><subject>Dynamic models</subject><subject>Elastic supports</subject><subject>Elastically supported</subject><subject>Elasticity</subject><subject>Energy transfer</subject><subject>Functionally graded</subject><subject>Functionally gradient materials</subject><subject>Galerkin method</subject><subject>Internal resonance</subject><subject>Kinematics</subject><subject>Materials elasticity</subject><subject>Mechanics</subject><subject>Mechanics (physics)</subject><subject>Microcantilever</subject><subject>Nonlinear</subject><subject>Nonlinear analysis</subject><subject>Numerical analysis</subject><subject>Size effects</subject><subject>Stress state</subject><subject>Viscoelasticity</subject><subject>Viscosity</subject><issn>0997-7538</issn><issn>1873-7285</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNUE1LxDAUDKLguvofKp5bX9KPJBdBFr9gxYueQzZ51ZRusybtwv57s9SDR-HxHjxmhpkh5JpCQYE2t12BU_BbNF_R9wUDKgqQBQA9IQsqeJlzJupTsgApec7rUpyTixg7AGDA6ILcvSaqHpyJmW-zvYvGY6_j6EzWToMZnR903x-yz6At2mzrTPBGD6PrcY8hXpKzVvcRr37vknw8PryvnvP129PL6n6dm7KSYy42hgkuGa8ZszrtyuIGagqbytRUAjWNLdMfrWBWVjyNrTRtyorKtkFRLsnNrLsL_nvCOKrOTyFZi4rRpqpZmSInlJxRyWSMAVu1C26rw0FRUMe6VKf-1KWOdSmQauauZi6mGHuHQUXjcDBoXUAzKuvdP1R-APmdeXo</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Ghayesh, Mergen H.</creator><general>Elsevier Masson SAS</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>201901</creationdate><title>Mechanics of viscoelastic functionally graded microcantilevers</title><author>Ghayesh, Mergen H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-8bc287927522da7524deb0510b4c51901c6d3a75ed82d947947d4a163419f6e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Dynamic models</topic><topic>Elastic supports</topic><topic>Elastically supported</topic><topic>Elasticity</topic><topic>Energy transfer</topic><topic>Functionally graded</topic><topic>Functionally gradient materials</topic><topic>Galerkin method</topic><topic>Internal resonance</topic><topic>Kinematics</topic><topic>Materials elasticity</topic><topic>Mechanics</topic><topic>Mechanics (physics)</topic><topic>Microcantilever</topic><topic>Nonlinear</topic><topic>Nonlinear analysis</topic><topic>Numerical analysis</topic><topic>Size effects</topic><topic>Stress state</topic><topic>Viscoelasticity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghayesh, Mergen H.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>European journal of mechanics, A, Solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghayesh, Mergen H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanics of viscoelastic functionally graded microcantilevers</atitle><jtitle>European journal of mechanics, A, Solids</jtitle><date>2019-01</date><risdate>2019</risdate><volume>73</volume><spage>492</spage><epage>499</epage><pages>492-499</pages><issn>0997-7538</issn><eissn>1873-7285</eissn><abstract>An elastically supported viscoelastic functionally graded (FG) microcantilever is considered and its nonlinear mechanics is analysed for the first time. Moreover, for the first time, energy transfer via internal resonances and motion complexity are analysed. A nonlinear spring model is incorporated as an elastic support which is representative of elasticity induced from neighbouring devices. Size effects are incorporated using the modified couple stress theory (MCST). Mori-Tanaka formula is utilised for FG-material-property variations. Kinematics/kinetics for an infinitesimal beam elements in conjunction with Hamilton's method are used for large curvatures. Galerkin's technique is used for reductions and truncations of the dynamic model of elastically supported viscoelastic FG microsystem. Both base-excitation/frequency continuations are performed and the dynamics is investigated.
•Large deformations soften the motion.•Three-to-one internal resonance occurs.•Number of saddle bifurcations is either two or four.•Internal resonance makes the motion complex.</abstract><cop>Berlin</cop><pub>Elsevier Masson SAS</pub><doi>10.1016/j.euromechsol.2018.09.001</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0997-7538 |
ispartof | European journal of mechanics, A, Solids, 2019-01, Vol.73, p.492-499 |
issn | 0997-7538 1873-7285 |
language | eng |
recordid | cdi_proquest_journals_2164523001 |
source | Access via ScienceDirect (Elsevier) |
subjects | Dynamic models Elastic supports Elastically supported Elasticity Energy transfer Functionally graded Functionally gradient materials Galerkin method Internal resonance Kinematics Materials elasticity Mechanics Mechanics (physics) Microcantilever Nonlinear Nonlinear analysis Numerical analysis Size effects Stress state Viscoelasticity Viscosity |
title | Mechanics of viscoelastic functionally graded microcantilevers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A55%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanics%20of%20viscoelastic%20functionally%20graded%20microcantilevers&rft.jtitle=European%20journal%20of%20mechanics,%20A,%20Solids&rft.au=Ghayesh,%20Mergen%20H.&rft.date=2019-01&rft.volume=73&rft.spage=492&rft.epage=499&rft.pages=492-499&rft.issn=0997-7538&rft.eissn=1873-7285&rft_id=info:doi/10.1016/j.euromechsol.2018.09.001&rft_dat=%3Cproquest_cross%3E2164523001%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2164523001&rft_id=info:pmid/&rft_els_id=S0997753818305023&rfr_iscdi=true |