Surface air temperature variability over the Arabian Peninsula and its links to circulation patterns

This study investigates the long‐term variability of surface air temperature (SAT) over the Arabian Peninsula (AP), using data from the Climate Research Unit (TS 3.22) for the 1960–2010 period. The long‐term climatology suggests that the warmest AP mean temperatures occur during summer, with the hig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of climatology 2019-01, Vol.39 (1), p.445-464
Hauptverfasser: Attada, Raju, Dasari, Hari Prasad, Chowdary, Jasti S., Yadav, Ramesh Kumar, Knio, Omar, Hoteit, Ibrahim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 464
container_issue 1
container_start_page 445
container_title International journal of climatology
container_volume 39
creator Attada, Raju
Dasari, Hari Prasad
Chowdary, Jasti S.
Yadav, Ramesh Kumar
Knio, Omar
Hoteit, Ibrahim
description This study investigates the long‐term variability of surface air temperature (SAT) over the Arabian Peninsula (AP), using data from the Climate Research Unit (TS 3.22) for the 1960–2010 period. The long‐term climatology suggests that the warmest AP mean temperatures occur during summer, with the highest temperatures over the northern AP (NAP), due to the monsoon–desert mechanism. During winter, the NAP exhibits low SATs under the influence of western disturbances originating from the Mediterranean. The southwestern AP exhibits the lowest temperatures because of its proximity to the Arabian Sea cold waters, and also because of the orographic effects. The inter‐annual variability of the SAT is stronger during winters. A linear trend analysis reveals a significant increase in the SAT anomaly (0.10 °C/decade) across the AP, consistently with the global temperature anomalies. Besides the local convective heating, summer SAT variability is associated with the weakening of the Asian jet stream and a Rossby wave train from the Indian Ocean. This variability is also influenced by the anomalous low pressure over the North Atlantic and the Sahara, a high‐pressure system over Siberia and the northwest Pacific. Both in spring and autumn, sea surface temperature (SST) variations over the Indo‐western Pacific are highly influenced the AP SATs, whereas winter SATs are modulated by the subtropical jet stream and the Middle East jet stream. In all seasons, the AP SAT is strongly influenced by the SST variations over the tropical oceans. The temperature variability is closely associated with the El Niño–Southern Oscillation (ENSO), North Atlantic Oscillation (NAO) and Arctic Oscillation (AO). The warm phase of ENSO (i.e., El Niño) is one possible reason behind the inter‐annual increase in SAT over the southern AP. The negative phases of NAO and AO also play a role in increasing AP SAT. Seasonal and annual mean surface air temperature (°C, shaded) and standard deviation (contours) over the Arabian Peninsula for the period 1960–2010.
doi_str_mv 10.1002/joc.5821
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2164518318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2164518318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3271-4346203ad2731d2a7bf617159ef1ada112f010056663bf93d7e19c2fa63b8c233</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKvgTwh48bI1k-xHcizFTwoV1PMyzSaYut1dk2yl_95ovQoDw8z7zAzzEnIJbAaM8ZtNr2eF5HBEJsBUlTEm5TGZMKlUJnOQp-QshA1jTCkoJ6R5Gb1FbSg6T6PZDsZjHL2hO_QO1651cU_7nUniu6Fzn1rY0WfTuS6MLVLsGupioK3rPgKNPdXO6yRE13d0wBiN78I5ObHYBnPxl6fk7e72dfGQLVf3j4v5MtOCV5DlIi85E9jwSkDDsVrbEioolLGADQJwy9KPRVmWYm2VaCoDSnOLqZSaCzElV4e9g-8_RxNivelH36WTNYcyL0CKFFNyfaC070PwxtaDd1v0-xpY_eNhmtL1j4cJzQ7ol2vN_l-uflotfvlvI1dyzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2164518318</pqid></control><display><type>article</type><title>Surface air temperature variability over the Arabian Peninsula and its links to circulation patterns</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Attada, Raju ; Dasari, Hari Prasad ; Chowdary, Jasti S. ; Yadav, Ramesh Kumar ; Knio, Omar ; Hoteit, Ibrahim</creator><creatorcontrib>Attada, Raju ; Dasari, Hari Prasad ; Chowdary, Jasti S. ; Yadav, Ramesh Kumar ; Knio, Omar ; Hoteit, Ibrahim</creatorcontrib><description>This study investigates the long‐term variability of surface air temperature (SAT) over the Arabian Peninsula (AP), using data from the Climate Research Unit (TS 3.22) for the 1960–2010 period. The long‐term climatology suggests that the warmest AP mean temperatures occur during summer, with the highest temperatures over the northern AP (NAP), due to the monsoon–desert mechanism. During winter, the NAP exhibits low SATs under the influence of western disturbances originating from the Mediterranean. The southwestern AP exhibits the lowest temperatures because of its proximity to the Arabian Sea cold waters, and also because of the orographic effects. The inter‐annual variability of the SAT is stronger during winters. A linear trend analysis reveals a significant increase in the SAT anomaly (0.10 °C/decade) across the AP, consistently with the global temperature anomalies. Besides the local convective heating, summer SAT variability is associated with the weakening of the Asian jet stream and a Rossby wave train from the Indian Ocean. This variability is also influenced by the anomalous low pressure over the North Atlantic and the Sahara, a high‐pressure system over Siberia and the northwest Pacific. Both in spring and autumn, sea surface temperature (SST) variations over the Indo‐western Pacific are highly influenced the AP SATs, whereas winter SATs are modulated by the subtropical jet stream and the Middle East jet stream. In all seasons, the AP SAT is strongly influenced by the SST variations over the tropical oceans. The temperature variability is closely associated with the El Niño–Southern Oscillation (ENSO), North Atlantic Oscillation (NAO) and Arctic Oscillation (AO). The warm phase of ENSO (i.e., El Niño) is one possible reason behind the inter‐annual increase in SAT over the southern AP. The negative phases of NAO and AO also play a role in increasing AP SAT. Seasonal and annual mean surface air temperature (°C, shaded) and standard deviation (contours) over the Arabian Peninsula for the period 1960–2010.</description><identifier>ISSN: 0899-8418</identifier><identifier>EISSN: 1097-0088</identifier><identifier>DOI: 10.1002/joc.5821</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Air temperature ; air temperature variability ; Annual variations ; Anomalies ; Arabian Peninsula ; Arctic Oscillation ; Atmospheric forcing ; Circulation patterns ; Climatology ; Convective heating ; El Nino ; El Nino phenomena ; El Nino-Southern Oscillation event ; Global temperatures ; Heating ; Jet stream ; Jet streams (meteorology) ; Low pressure ; Lowest temperatures ; Mean temperatures ; Monsoons ; North Atlantic Oscillation ; Ocean-atmosphere system ; Oceans ; Orographic effects ; Planetary waves ; Pressure ; Rivers ; Rossby waves ; Sea surface ; Sea surface temperature ; Southern Oscillation ; Subtropical jet stream ; Summer ; Surface temperature ; Surface-air temperature relationships ; Temperature ; Temperature (air-sea) ; Temperature anomalies ; Temperature effects ; Temperature variability ; Trend analysis ; trends ; Tropical climate ; Variability ; Wave packets ; Winter</subject><ispartof>International journal of climatology, 2019-01, Vol.39 (1), p.445-464</ispartof><rights>2018 Royal Meteorological Society</rights><rights>2019 Royal Meteorological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3271-4346203ad2731d2a7bf617159ef1ada112f010056663bf93d7e19c2fa63b8c233</citedby><cites>FETCH-LOGICAL-c3271-4346203ad2731d2a7bf617159ef1ada112f010056663bf93d7e19c2fa63b8c233</cites><orcidid>0000-0003-0628-4481 ; 0000-0002-6194-4561</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjoc.5821$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjoc.5821$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Attada, Raju</creatorcontrib><creatorcontrib>Dasari, Hari Prasad</creatorcontrib><creatorcontrib>Chowdary, Jasti S.</creatorcontrib><creatorcontrib>Yadav, Ramesh Kumar</creatorcontrib><creatorcontrib>Knio, Omar</creatorcontrib><creatorcontrib>Hoteit, Ibrahim</creatorcontrib><title>Surface air temperature variability over the Arabian Peninsula and its links to circulation patterns</title><title>International journal of climatology</title><description>This study investigates the long‐term variability of surface air temperature (SAT) over the Arabian Peninsula (AP), using data from the Climate Research Unit (TS 3.22) for the 1960–2010 period. The long‐term climatology suggests that the warmest AP mean temperatures occur during summer, with the highest temperatures over the northern AP (NAP), due to the monsoon–desert mechanism. During winter, the NAP exhibits low SATs under the influence of western disturbances originating from the Mediterranean. The southwestern AP exhibits the lowest temperatures because of its proximity to the Arabian Sea cold waters, and also because of the orographic effects. The inter‐annual variability of the SAT is stronger during winters. A linear trend analysis reveals a significant increase in the SAT anomaly (0.10 °C/decade) across the AP, consistently with the global temperature anomalies. Besides the local convective heating, summer SAT variability is associated with the weakening of the Asian jet stream and a Rossby wave train from the Indian Ocean. This variability is also influenced by the anomalous low pressure over the North Atlantic and the Sahara, a high‐pressure system over Siberia and the northwest Pacific. Both in spring and autumn, sea surface temperature (SST) variations over the Indo‐western Pacific are highly influenced the AP SATs, whereas winter SATs are modulated by the subtropical jet stream and the Middle East jet stream. In all seasons, the AP SAT is strongly influenced by the SST variations over the tropical oceans. The temperature variability is closely associated with the El Niño–Southern Oscillation (ENSO), North Atlantic Oscillation (NAO) and Arctic Oscillation (AO). The warm phase of ENSO (i.e., El Niño) is one possible reason behind the inter‐annual increase in SAT over the southern AP. The negative phases of NAO and AO also play a role in increasing AP SAT. Seasonal and annual mean surface air temperature (°C, shaded) and standard deviation (contours) over the Arabian Peninsula for the period 1960–2010.</description><subject>Air temperature</subject><subject>air temperature variability</subject><subject>Annual variations</subject><subject>Anomalies</subject><subject>Arabian Peninsula</subject><subject>Arctic Oscillation</subject><subject>Atmospheric forcing</subject><subject>Circulation patterns</subject><subject>Climatology</subject><subject>Convective heating</subject><subject>El Nino</subject><subject>El Nino phenomena</subject><subject>El Nino-Southern Oscillation event</subject><subject>Global temperatures</subject><subject>Heating</subject><subject>Jet stream</subject><subject>Jet streams (meteorology)</subject><subject>Low pressure</subject><subject>Lowest temperatures</subject><subject>Mean temperatures</subject><subject>Monsoons</subject><subject>North Atlantic Oscillation</subject><subject>Ocean-atmosphere system</subject><subject>Oceans</subject><subject>Orographic effects</subject><subject>Planetary waves</subject><subject>Pressure</subject><subject>Rivers</subject><subject>Rossby waves</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Southern Oscillation</subject><subject>Subtropical jet stream</subject><subject>Summer</subject><subject>Surface temperature</subject><subject>Surface-air temperature relationships</subject><subject>Temperature</subject><subject>Temperature (air-sea)</subject><subject>Temperature anomalies</subject><subject>Temperature effects</subject><subject>Temperature variability</subject><subject>Trend analysis</subject><subject>trends</subject><subject>Tropical climate</subject><subject>Variability</subject><subject>Wave packets</subject><subject>Winter</subject><issn>0899-8418</issn><issn>1097-0088</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKvgTwh48bI1k-xHcizFTwoV1PMyzSaYut1dk2yl_95ovQoDw8z7zAzzEnIJbAaM8ZtNr2eF5HBEJsBUlTEm5TGZMKlUJnOQp-QshA1jTCkoJ6R5Gb1FbSg6T6PZDsZjHL2hO_QO1651cU_7nUniu6Fzn1rY0WfTuS6MLVLsGupioK3rPgKNPdXO6yRE13d0wBiN78I5ObHYBnPxl6fk7e72dfGQLVf3j4v5MtOCV5DlIi85E9jwSkDDsVrbEioolLGADQJwy9KPRVmWYm2VaCoDSnOLqZSaCzElV4e9g-8_RxNivelH36WTNYcyL0CKFFNyfaC070PwxtaDd1v0-xpY_eNhmtL1j4cJzQ7ol2vN_l-uflotfvlvI1dyzg</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Attada, Raju</creator><creator>Dasari, Hari Prasad</creator><creator>Chowdary, Jasti S.</creator><creator>Yadav, Ramesh Kumar</creator><creator>Knio, Omar</creator><creator>Hoteit, Ibrahim</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0003-0628-4481</orcidid><orcidid>https://orcid.org/0000-0002-6194-4561</orcidid></search><sort><creationdate>201901</creationdate><title>Surface air temperature variability over the Arabian Peninsula and its links to circulation patterns</title><author>Attada, Raju ; Dasari, Hari Prasad ; Chowdary, Jasti S. ; Yadav, Ramesh Kumar ; Knio, Omar ; Hoteit, Ibrahim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3271-4346203ad2731d2a7bf617159ef1ada112f010056663bf93d7e19c2fa63b8c233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Air temperature</topic><topic>air temperature variability</topic><topic>Annual variations</topic><topic>Anomalies</topic><topic>Arabian Peninsula</topic><topic>Arctic Oscillation</topic><topic>Atmospheric forcing</topic><topic>Circulation patterns</topic><topic>Climatology</topic><topic>Convective heating</topic><topic>El Nino</topic><topic>El Nino phenomena</topic><topic>El Nino-Southern Oscillation event</topic><topic>Global temperatures</topic><topic>Heating</topic><topic>Jet stream</topic><topic>Jet streams (meteorology)</topic><topic>Low pressure</topic><topic>Lowest temperatures</topic><topic>Mean temperatures</topic><topic>Monsoons</topic><topic>North Atlantic Oscillation</topic><topic>Ocean-atmosphere system</topic><topic>Oceans</topic><topic>Orographic effects</topic><topic>Planetary waves</topic><topic>Pressure</topic><topic>Rivers</topic><topic>Rossby waves</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Southern Oscillation</topic><topic>Subtropical jet stream</topic><topic>Summer</topic><topic>Surface temperature</topic><topic>Surface-air temperature relationships</topic><topic>Temperature</topic><topic>Temperature (air-sea)</topic><topic>Temperature anomalies</topic><topic>Temperature effects</topic><topic>Temperature variability</topic><topic>Trend analysis</topic><topic>trends</topic><topic>Tropical climate</topic><topic>Variability</topic><topic>Wave packets</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Attada, Raju</creatorcontrib><creatorcontrib>Dasari, Hari Prasad</creatorcontrib><creatorcontrib>Chowdary, Jasti S.</creatorcontrib><creatorcontrib>Yadav, Ramesh Kumar</creatorcontrib><creatorcontrib>Knio, Omar</creatorcontrib><creatorcontrib>Hoteit, Ibrahim</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>International journal of climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Attada, Raju</au><au>Dasari, Hari Prasad</au><au>Chowdary, Jasti S.</au><au>Yadav, Ramesh Kumar</au><au>Knio, Omar</au><au>Hoteit, Ibrahim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface air temperature variability over the Arabian Peninsula and its links to circulation patterns</atitle><jtitle>International journal of climatology</jtitle><date>2019-01</date><risdate>2019</risdate><volume>39</volume><issue>1</issue><spage>445</spage><epage>464</epage><pages>445-464</pages><issn>0899-8418</issn><eissn>1097-0088</eissn><abstract>This study investigates the long‐term variability of surface air temperature (SAT) over the Arabian Peninsula (AP), using data from the Climate Research Unit (TS 3.22) for the 1960–2010 period. The long‐term climatology suggests that the warmest AP mean temperatures occur during summer, with the highest temperatures over the northern AP (NAP), due to the monsoon–desert mechanism. During winter, the NAP exhibits low SATs under the influence of western disturbances originating from the Mediterranean. The southwestern AP exhibits the lowest temperatures because of its proximity to the Arabian Sea cold waters, and also because of the orographic effects. The inter‐annual variability of the SAT is stronger during winters. A linear trend analysis reveals a significant increase in the SAT anomaly (0.10 °C/decade) across the AP, consistently with the global temperature anomalies. Besides the local convective heating, summer SAT variability is associated with the weakening of the Asian jet stream and a Rossby wave train from the Indian Ocean. This variability is also influenced by the anomalous low pressure over the North Atlantic and the Sahara, a high‐pressure system over Siberia and the northwest Pacific. Both in spring and autumn, sea surface temperature (SST) variations over the Indo‐western Pacific are highly influenced the AP SATs, whereas winter SATs are modulated by the subtropical jet stream and the Middle East jet stream. In all seasons, the AP SAT is strongly influenced by the SST variations over the tropical oceans. The temperature variability is closely associated with the El Niño–Southern Oscillation (ENSO), North Atlantic Oscillation (NAO) and Arctic Oscillation (AO). The warm phase of ENSO (i.e., El Niño) is one possible reason behind the inter‐annual increase in SAT over the southern AP. The negative phases of NAO and AO also play a role in increasing AP SAT. Seasonal and annual mean surface air temperature (°C, shaded) and standard deviation (contours) over the Arabian Peninsula for the period 1960–2010.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/joc.5821</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-0628-4481</orcidid><orcidid>https://orcid.org/0000-0002-6194-4561</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0899-8418
ispartof International journal of climatology, 2019-01, Vol.39 (1), p.445-464
issn 0899-8418
1097-0088
language eng
recordid cdi_proquest_journals_2164518318
source Wiley Online Library Journals Frontfile Complete
subjects Air temperature
air temperature variability
Annual variations
Anomalies
Arabian Peninsula
Arctic Oscillation
Atmospheric forcing
Circulation patterns
Climatology
Convective heating
El Nino
El Nino phenomena
El Nino-Southern Oscillation event
Global temperatures
Heating
Jet stream
Jet streams (meteorology)
Low pressure
Lowest temperatures
Mean temperatures
Monsoons
North Atlantic Oscillation
Ocean-atmosphere system
Oceans
Orographic effects
Planetary waves
Pressure
Rivers
Rossby waves
Sea surface
Sea surface temperature
Southern Oscillation
Subtropical jet stream
Summer
Surface temperature
Surface-air temperature relationships
Temperature
Temperature (air-sea)
Temperature anomalies
Temperature effects
Temperature variability
Trend analysis
trends
Tropical climate
Variability
Wave packets
Winter
title Surface air temperature variability over the Arabian Peninsula and its links to circulation patterns
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A00%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20air%20temperature%20variability%20over%20the%20Arabian%20Peninsula%20and%20its%20links%20to%20circulation%20patterns&rft.jtitle=International%20journal%20of%20climatology&rft.au=Attada,%20Raju&rft.date=2019-01&rft.volume=39&rft.issue=1&rft.spage=445&rft.epage=464&rft.pages=445-464&rft.issn=0899-8418&rft.eissn=1097-0088&rft_id=info:doi/10.1002/joc.5821&rft_dat=%3Cproquest_cross%3E2164518318%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2164518318&rft_id=info:pmid/&rfr_iscdi=true