Freestanding 3D Mesostructures, Functional Devices, and Shape‐Programmable Systems Based on Mechanically Induced Assembly with Shape Memory Polymers

Capabilities for controlled formation of sophisticated 3D micro/nanostructures in advanced materials have foundational implications across a broad range of fields. Recently developed methods use stress release in prestrained elastomeric substrates as a driving force for assembling 3D structures and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2019-01, Vol.31 (2), p.e1805615-n/a
Hauptverfasser: Wang, Xueju, Guo, Xiaogang, Ye, Jilong, Zheng, Ning, Kohli, Punit, Choi, Dongwhi, Zhang, Yi, Xie, Zhaoqian, Zhang, Qihui, Luan, Haiwen, Nan, Kewang, Kim, Bong Hoon, Xu, Yameng, Shan, Xiwei, Bai, Wubin, Sun, Rujie, Wang, Zizheng, Jang, Hokyung, Zhang, Fan, Ma, Yinji, Xu, Zheng, Feng, Xue, Xie, Tao, Huang, Yonggang, Zhang, Yihui, Rogers, John A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page e1805615
container_title Advanced materials (Weinheim)
container_volume 31
creator Wang, Xueju
Guo, Xiaogang
Ye, Jilong
Zheng, Ning
Kohli, Punit
Choi, Dongwhi
Zhang, Yi
Xie, Zhaoqian
Zhang, Qihui
Luan, Haiwen
Nan, Kewang
Kim, Bong Hoon
Xu, Yameng
Shan, Xiwei
Bai, Wubin
Sun, Rujie
Wang, Zizheng
Jang, Hokyung
Zhang, Fan
Ma, Yinji
Xu, Zheng
Feng, Xue
Xie, Tao
Huang, Yonggang
Zhang, Yihui
Rogers, John A.
description Capabilities for controlled formation of sophisticated 3D micro/nanostructures in advanced materials have foundational implications across a broad range of fields. Recently developed methods use stress release in prestrained elastomeric substrates as a driving force for assembling 3D structures and functional microdevices from 2D precursors. A limitation of this approach is that releasing these structures from their substrate returns them to their original 2D layouts due to the elastic recovery of the constituent materials. Here, a concept in which shape memory polymers serve as a means to achieve freestanding 3D architectures from the same basic approach is introduced, with demonstrated ability to realize lateral dimensions, characteristic feature sizes, and thicknesses as small as ≈500, 10, and 5 µm simultaneously, and the potential to scale to much larger or smaller dimensions. Wireless electronic devices illustrate the capacity to integrate other materials and functional components into these 3D frameworks. Quantitative mechanics modeling and experimental measurements illustrate not only shape fixation but also capabilities that allow for structure recovery and shape programmability, as a form of 4D structural control. These ideas provide opportunities in fields ranging from micro‐electromechanical systems and microrobotics, to smart intravascular stents, tissue scaffolds, and many others. The use of shape‐memory polymers in mechanically guided formation of 3D structures provides immediate access to freestanding 3D architectures and functional devices across length scales from micrometers to centimeters. The resulting engineering options provide opportunities in fields ranging from micro‐electromechanical systems and microrobotics to smart intravascular stents, tissue scaffolds, and many others.
doi_str_mv 10.1002/adma.201805615
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2164466388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2164466388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4815-1b7543ed2c5c2917d93b9312cd34c9e969d9ade3cffb42ce96b83df24047feb63</originalsourceid><addsrcrecordid>eNqFkc1O3DAURq2qVZlStl1WlrptBv9PvJwynRYJBBJlHTn2DRMUx1M7AWXHI7DqA_ZJ6tEAXbK60qdzj3Tvh9AnSuaUEHZsnDdzRmhJpKLyDZpRyWghiJZv0YxoLgutRHmAPqR0SwjRiqj36IATviCKyBn6s44AaTC9a_sbzFf4HFJIQxztMEZIX_F67O3Qht50eAV3rd1lmcZXG7OFvw-PlzHcROO9qTvAV1MawCf8zSRwOPTZZjemb63pugmf9m60OV-mBL7OwX07bPaiDPoQJ3wZuslDTB_Ru8Z0CY6e5iG6Xn__dfKzOLv4cXqyPCusKKksaL2QgoNjVlqm6cJpXmtOmXVcWA1aaaeNA26bphbM5qAuuWuYIGLRQK34Ifqy925j-D3mR1S3YYz52FQxqoRQipdlpuZ7ysaQUoSm2sbWmzhVlFS7GqpdDdVLDXnh85N2rD24F_z57xnQe-C-7WB6RVctV-fL__J_hSeXiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2164466388</pqid></control><display><type>article</type><title>Freestanding 3D Mesostructures, Functional Devices, and Shape‐Programmable Systems Based on Mechanically Induced Assembly with Shape Memory Polymers</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Xueju ; Guo, Xiaogang ; Ye, Jilong ; Zheng, Ning ; Kohli, Punit ; Choi, Dongwhi ; Zhang, Yi ; Xie, Zhaoqian ; Zhang, Qihui ; Luan, Haiwen ; Nan, Kewang ; Kim, Bong Hoon ; Xu, Yameng ; Shan, Xiwei ; Bai, Wubin ; Sun, Rujie ; Wang, Zizheng ; Jang, Hokyung ; Zhang, Fan ; Ma, Yinji ; Xu, Zheng ; Feng, Xue ; Xie, Tao ; Huang, Yonggang ; Zhang, Yihui ; Rogers, John A.</creator><creatorcontrib>Wang, Xueju ; Guo, Xiaogang ; Ye, Jilong ; Zheng, Ning ; Kohli, Punit ; Choi, Dongwhi ; Zhang, Yi ; Xie, Zhaoqian ; Zhang, Qihui ; Luan, Haiwen ; Nan, Kewang ; Kim, Bong Hoon ; Xu, Yameng ; Shan, Xiwei ; Bai, Wubin ; Sun, Rujie ; Wang, Zizheng ; Jang, Hokyung ; Zhang, Fan ; Ma, Yinji ; Xu, Zheng ; Feng, Xue ; Xie, Tao ; Huang, Yonggang ; Zhang, Yihui ; Rogers, John A.</creatorcontrib><description>Capabilities for controlled formation of sophisticated 3D micro/nanostructures in advanced materials have foundational implications across a broad range of fields. Recently developed methods use stress release in prestrained elastomeric substrates as a driving force for assembling 3D structures and functional microdevices from 2D precursors. A limitation of this approach is that releasing these structures from their substrate returns them to their original 2D layouts due to the elastic recovery of the constituent materials. Here, a concept in which shape memory polymers serve as a means to achieve freestanding 3D architectures from the same basic approach is introduced, with demonstrated ability to realize lateral dimensions, characteristic feature sizes, and thicknesses as small as ≈500, 10, and 5 µm simultaneously, and the potential to scale to much larger or smaller dimensions. Wireless electronic devices illustrate the capacity to integrate other materials and functional components into these 3D frameworks. Quantitative mechanics modeling and experimental measurements illustrate not only shape fixation but also capabilities that allow for structure recovery and shape programmability, as a form of 4D structural control. These ideas provide opportunities in fields ranging from micro‐electromechanical systems and microrobotics, to smart intravascular stents, tissue scaffolds, and many others. The use of shape‐memory polymers in mechanically guided formation of 3D structures provides immediate access to freestanding 3D architectures and functional devices across length scales from micrometers to centimeters. The resulting engineering options provide opportunities in fields ranging from micro‐electromechanical systems and microrobotics to smart intravascular stents, tissue scaffolds, and many others.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201805615</identifier><identifier>PMID: 30370605</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>3D microstructures ; 3D printing ; 4D printing ; Assembling ; Elastic recovery ; Elastomers ; Electronic devices ; guided assembly ; Materials recovery ; Materials science ; Polymers ; Shape memory ; shape memory polymers ; Substrates ; Three dimensional models ; Wireless communications</subject><ispartof>Advanced materials (Weinheim), 2019-01, Vol.31 (2), p.e1805615-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4815-1b7543ed2c5c2917d93b9312cd34c9e969d9ade3cffb42ce96b83df24047feb63</citedby><cites>FETCH-LOGICAL-c4815-1b7543ed2c5c2917d93b9312cd34c9e969d9ade3cffb42ce96b83df24047feb63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201805615$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201805615$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30370605$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xueju</creatorcontrib><creatorcontrib>Guo, Xiaogang</creatorcontrib><creatorcontrib>Ye, Jilong</creatorcontrib><creatorcontrib>Zheng, Ning</creatorcontrib><creatorcontrib>Kohli, Punit</creatorcontrib><creatorcontrib>Choi, Dongwhi</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Xie, Zhaoqian</creatorcontrib><creatorcontrib>Zhang, Qihui</creatorcontrib><creatorcontrib>Luan, Haiwen</creatorcontrib><creatorcontrib>Nan, Kewang</creatorcontrib><creatorcontrib>Kim, Bong Hoon</creatorcontrib><creatorcontrib>Xu, Yameng</creatorcontrib><creatorcontrib>Shan, Xiwei</creatorcontrib><creatorcontrib>Bai, Wubin</creatorcontrib><creatorcontrib>Sun, Rujie</creatorcontrib><creatorcontrib>Wang, Zizheng</creatorcontrib><creatorcontrib>Jang, Hokyung</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Ma, Yinji</creatorcontrib><creatorcontrib>Xu, Zheng</creatorcontrib><creatorcontrib>Feng, Xue</creatorcontrib><creatorcontrib>Xie, Tao</creatorcontrib><creatorcontrib>Huang, Yonggang</creatorcontrib><creatorcontrib>Zhang, Yihui</creatorcontrib><creatorcontrib>Rogers, John A.</creatorcontrib><title>Freestanding 3D Mesostructures, Functional Devices, and Shape‐Programmable Systems Based on Mechanically Induced Assembly with Shape Memory Polymers</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Capabilities for controlled formation of sophisticated 3D micro/nanostructures in advanced materials have foundational implications across a broad range of fields. Recently developed methods use stress release in prestrained elastomeric substrates as a driving force for assembling 3D structures and functional microdevices from 2D precursors. A limitation of this approach is that releasing these structures from their substrate returns them to their original 2D layouts due to the elastic recovery of the constituent materials. Here, a concept in which shape memory polymers serve as a means to achieve freestanding 3D architectures from the same basic approach is introduced, with demonstrated ability to realize lateral dimensions, characteristic feature sizes, and thicknesses as small as ≈500, 10, and 5 µm simultaneously, and the potential to scale to much larger or smaller dimensions. Wireless electronic devices illustrate the capacity to integrate other materials and functional components into these 3D frameworks. Quantitative mechanics modeling and experimental measurements illustrate not only shape fixation but also capabilities that allow for structure recovery and shape programmability, as a form of 4D structural control. These ideas provide opportunities in fields ranging from micro‐electromechanical systems and microrobotics, to smart intravascular stents, tissue scaffolds, and many others. The use of shape‐memory polymers in mechanically guided formation of 3D structures provides immediate access to freestanding 3D architectures and functional devices across length scales from micrometers to centimeters. The resulting engineering options provide opportunities in fields ranging from micro‐electromechanical systems and microrobotics to smart intravascular stents, tissue scaffolds, and many others.</description><subject>3D microstructures</subject><subject>3D printing</subject><subject>4D printing</subject><subject>Assembling</subject><subject>Elastic recovery</subject><subject>Elastomers</subject><subject>Electronic devices</subject><subject>guided assembly</subject><subject>Materials recovery</subject><subject>Materials science</subject><subject>Polymers</subject><subject>Shape memory</subject><subject>shape memory polymers</subject><subject>Substrates</subject><subject>Three dimensional models</subject><subject>Wireless communications</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkc1O3DAURq2qVZlStl1WlrptBv9PvJwynRYJBBJlHTn2DRMUx1M7AWXHI7DqA_ZJ6tEAXbK60qdzj3Tvh9AnSuaUEHZsnDdzRmhJpKLyDZpRyWghiJZv0YxoLgutRHmAPqR0SwjRiqj36IATviCKyBn6s44AaTC9a_sbzFf4HFJIQxztMEZIX_F67O3Qht50eAV3rd1lmcZXG7OFvw-PlzHcROO9qTvAV1MawCf8zSRwOPTZZjemb63pugmf9m60OV-mBL7OwX07bPaiDPoQJ3wZuslDTB_Ru8Z0CY6e5iG6Xn__dfKzOLv4cXqyPCusKKksaL2QgoNjVlqm6cJpXmtOmXVcWA1aaaeNA26bphbM5qAuuWuYIGLRQK34Ifqy925j-D3mR1S3YYz52FQxqoRQipdlpuZ7ysaQUoSm2sbWmzhVlFS7GqpdDdVLDXnh85N2rD24F_z57xnQe-C-7WB6RVctV-fL__J_hSeXiA</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Wang, Xueju</creator><creator>Guo, Xiaogang</creator><creator>Ye, Jilong</creator><creator>Zheng, Ning</creator><creator>Kohli, Punit</creator><creator>Choi, Dongwhi</creator><creator>Zhang, Yi</creator><creator>Xie, Zhaoqian</creator><creator>Zhang, Qihui</creator><creator>Luan, Haiwen</creator><creator>Nan, Kewang</creator><creator>Kim, Bong Hoon</creator><creator>Xu, Yameng</creator><creator>Shan, Xiwei</creator><creator>Bai, Wubin</creator><creator>Sun, Rujie</creator><creator>Wang, Zizheng</creator><creator>Jang, Hokyung</creator><creator>Zhang, Fan</creator><creator>Ma, Yinji</creator><creator>Xu, Zheng</creator><creator>Feng, Xue</creator><creator>Xie, Tao</creator><creator>Huang, Yonggang</creator><creator>Zhang, Yihui</creator><creator>Rogers, John A.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20190101</creationdate><title>Freestanding 3D Mesostructures, Functional Devices, and Shape‐Programmable Systems Based on Mechanically Induced Assembly with Shape Memory Polymers</title><author>Wang, Xueju ; Guo, Xiaogang ; Ye, Jilong ; Zheng, Ning ; Kohli, Punit ; Choi, Dongwhi ; Zhang, Yi ; Xie, Zhaoqian ; Zhang, Qihui ; Luan, Haiwen ; Nan, Kewang ; Kim, Bong Hoon ; Xu, Yameng ; Shan, Xiwei ; Bai, Wubin ; Sun, Rujie ; Wang, Zizheng ; Jang, Hokyung ; Zhang, Fan ; Ma, Yinji ; Xu, Zheng ; Feng, Xue ; Xie, Tao ; Huang, Yonggang ; Zhang, Yihui ; Rogers, John A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4815-1b7543ed2c5c2917d93b9312cd34c9e969d9ade3cffb42ce96b83df24047feb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3D microstructures</topic><topic>3D printing</topic><topic>4D printing</topic><topic>Assembling</topic><topic>Elastic recovery</topic><topic>Elastomers</topic><topic>Electronic devices</topic><topic>guided assembly</topic><topic>Materials recovery</topic><topic>Materials science</topic><topic>Polymers</topic><topic>Shape memory</topic><topic>shape memory polymers</topic><topic>Substrates</topic><topic>Three dimensional models</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xueju</creatorcontrib><creatorcontrib>Guo, Xiaogang</creatorcontrib><creatorcontrib>Ye, Jilong</creatorcontrib><creatorcontrib>Zheng, Ning</creatorcontrib><creatorcontrib>Kohli, Punit</creatorcontrib><creatorcontrib>Choi, Dongwhi</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Xie, Zhaoqian</creatorcontrib><creatorcontrib>Zhang, Qihui</creatorcontrib><creatorcontrib>Luan, Haiwen</creatorcontrib><creatorcontrib>Nan, Kewang</creatorcontrib><creatorcontrib>Kim, Bong Hoon</creatorcontrib><creatorcontrib>Xu, Yameng</creatorcontrib><creatorcontrib>Shan, Xiwei</creatorcontrib><creatorcontrib>Bai, Wubin</creatorcontrib><creatorcontrib>Sun, Rujie</creatorcontrib><creatorcontrib>Wang, Zizheng</creatorcontrib><creatorcontrib>Jang, Hokyung</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Ma, Yinji</creatorcontrib><creatorcontrib>Xu, Zheng</creatorcontrib><creatorcontrib>Feng, Xue</creatorcontrib><creatorcontrib>Xie, Tao</creatorcontrib><creatorcontrib>Huang, Yonggang</creatorcontrib><creatorcontrib>Zhang, Yihui</creatorcontrib><creatorcontrib>Rogers, John A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xueju</au><au>Guo, Xiaogang</au><au>Ye, Jilong</au><au>Zheng, Ning</au><au>Kohli, Punit</au><au>Choi, Dongwhi</au><au>Zhang, Yi</au><au>Xie, Zhaoqian</au><au>Zhang, Qihui</au><au>Luan, Haiwen</au><au>Nan, Kewang</au><au>Kim, Bong Hoon</au><au>Xu, Yameng</au><au>Shan, Xiwei</au><au>Bai, Wubin</au><au>Sun, Rujie</au><au>Wang, Zizheng</au><au>Jang, Hokyung</au><au>Zhang, Fan</au><au>Ma, Yinji</au><au>Xu, Zheng</au><au>Feng, Xue</au><au>Xie, Tao</au><au>Huang, Yonggang</au><au>Zhang, Yihui</au><au>Rogers, John A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Freestanding 3D Mesostructures, Functional Devices, and Shape‐Programmable Systems Based on Mechanically Induced Assembly with Shape Memory Polymers</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>31</volume><issue>2</issue><spage>e1805615</spage><epage>n/a</epage><pages>e1805615-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Capabilities for controlled formation of sophisticated 3D micro/nanostructures in advanced materials have foundational implications across a broad range of fields. Recently developed methods use stress release in prestrained elastomeric substrates as a driving force for assembling 3D structures and functional microdevices from 2D precursors. A limitation of this approach is that releasing these structures from their substrate returns them to their original 2D layouts due to the elastic recovery of the constituent materials. Here, a concept in which shape memory polymers serve as a means to achieve freestanding 3D architectures from the same basic approach is introduced, with demonstrated ability to realize lateral dimensions, characteristic feature sizes, and thicknesses as small as ≈500, 10, and 5 µm simultaneously, and the potential to scale to much larger or smaller dimensions. Wireless electronic devices illustrate the capacity to integrate other materials and functional components into these 3D frameworks. Quantitative mechanics modeling and experimental measurements illustrate not only shape fixation but also capabilities that allow for structure recovery and shape programmability, as a form of 4D structural control. These ideas provide opportunities in fields ranging from micro‐electromechanical systems and microrobotics, to smart intravascular stents, tissue scaffolds, and many others. The use of shape‐memory polymers in mechanically guided formation of 3D structures provides immediate access to freestanding 3D architectures and functional devices across length scales from micrometers to centimeters. The resulting engineering options provide opportunities in fields ranging from micro‐electromechanical systems and microrobotics to smart intravascular stents, tissue scaffolds, and many others.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30370605</pmid><doi>10.1002/adma.201805615</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2019-01, Vol.31 (2), p.e1805615-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_journals_2164466388
source Wiley Online Library Journals Frontfile Complete
subjects 3D microstructures
3D printing
4D printing
Assembling
Elastic recovery
Elastomers
Electronic devices
guided assembly
Materials recovery
Materials science
Polymers
Shape memory
shape memory polymers
Substrates
Three dimensional models
Wireless communications
title Freestanding 3D Mesostructures, Functional Devices, and Shape‐Programmable Systems Based on Mechanically Induced Assembly with Shape Memory Polymers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A40%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Freestanding%203D%20Mesostructures,%20Functional%20Devices,%20and%20Shape%E2%80%90Programmable%20Systems%20Based%20on%20Mechanically%20Induced%20Assembly%20with%20Shape%20Memory%20Polymers&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Wang,%20Xueju&rft.date=2019-01-01&rft.volume=31&rft.issue=2&rft.spage=e1805615&rft.epage=n/a&rft.pages=e1805615-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201805615&rft_dat=%3Cproquest_cross%3E2164466388%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2164466388&rft_id=info:pmid/30370605&rfr_iscdi=true