A Simple Algorithm for Scalable Monte Carlo Inference

The methods of statistical physics are widely used for modelling complex networks. Building on the recently proposed Equilibrium Expectation approach, we derive a simple and efficient algorithm for maximum likelihood estimation (MLE) of parameters of exponential family distributions - a family of st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-02
Hauptverfasser: Borisenko, Alexander, Byshkin, Maksym, Lomi, Alessandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Borisenko, Alexander
Byshkin, Maksym
Lomi, Alessandro
description The methods of statistical physics are widely used for modelling complex networks. Building on the recently proposed Equilibrium Expectation approach, we derive a simple and efficient algorithm for maximum likelihood estimation (MLE) of parameters of exponential family distributions - a family of statistical models, that includes Ising model, Markov Random Field and Exponential Random Graph models. Computational experiments and analysis of empirical data demonstrate that the algorithm increases by orders of magnitude the size of network data amenable to Monte Carlo based inference. We report results suggesting that the applicability of the algorithm may readily be extended to the analysis of large samples of dependent observations commonly found in biology, sociology, astrophysics, and ecology.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2163286370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2163286370</sourcerecordid><originalsourceid>FETCH-proquest_journals_21632863703</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwdVQIzswtyElVcMxJzy_KLMnIVUjLL1IITk7MSUwCCvvm55WkKjgnFuXkK3jmpaUWpeYlp_IwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRoZmxkYWZsbmBMXGqACUxNBk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2163286370</pqid></control><display><type>article</type><title>A Simple Algorithm for Scalable Monte Carlo Inference</title><source>Free E- Journals</source><creator>Borisenko, Alexander ; Byshkin, Maksym ; Lomi, Alessandro</creator><creatorcontrib>Borisenko, Alexander ; Byshkin, Maksym ; Lomi, Alessandro</creatorcontrib><description>The methods of statistical physics are widely used for modelling complex networks. Building on the recently proposed Equilibrium Expectation approach, we derive a simple and efficient algorithm for maximum likelihood estimation (MLE) of parameters of exponential family distributions - a family of statistical models, that includes Ising model, Markov Random Field and Exponential Random Graph models. Computational experiments and analysis of empirical data demonstrate that the algorithm increases by orders of magnitude the size of network data amenable to Monte Carlo based inference. We report results suggesting that the applicability of the algorithm may readily be extended to the analysis of large samples of dependent observations commonly found in biology, sociology, astrophysics, and ecology.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Computer simulation ; Divergence ; Fields (mathematics) ; Markov analysis ; Markov chains ; Maximum likelihood estimation ; Monte Carlo simulation ; Parameter estimation ; Statistical inference</subject><ispartof>arXiv.org, 2020-02</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Borisenko, Alexander</creatorcontrib><creatorcontrib>Byshkin, Maksym</creatorcontrib><creatorcontrib>Lomi, Alessandro</creatorcontrib><title>A Simple Algorithm for Scalable Monte Carlo Inference</title><title>arXiv.org</title><description>The methods of statistical physics are widely used for modelling complex networks. Building on the recently proposed Equilibrium Expectation approach, we derive a simple and efficient algorithm for maximum likelihood estimation (MLE) of parameters of exponential family distributions - a family of statistical models, that includes Ising model, Markov Random Field and Exponential Random Graph models. Computational experiments and analysis of empirical data demonstrate that the algorithm increases by orders of magnitude the size of network data amenable to Monte Carlo based inference. We report results suggesting that the applicability of the algorithm may readily be extended to the analysis of large samples of dependent observations commonly found in biology, sociology, astrophysics, and ecology.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Divergence</subject><subject>Fields (mathematics)</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Maximum likelihood estimation</subject><subject>Monte Carlo simulation</subject><subject>Parameter estimation</subject><subject>Statistical inference</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwdVQIzswtyElVcMxJzy_KLMnIVUjLL1IITk7MSUwCCvvm55WkKjgnFuXkK3jmpaUWpeYlp_IwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRoZmxkYWZsbmBMXGqACUxNBk</recordid><startdate>20200211</startdate><enddate>20200211</enddate><creator>Borisenko, Alexander</creator><creator>Byshkin, Maksym</creator><creator>Lomi, Alessandro</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200211</creationdate><title>A Simple Algorithm for Scalable Monte Carlo Inference</title><author>Borisenko, Alexander ; Byshkin, Maksym ; Lomi, Alessandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21632863703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Divergence</topic><topic>Fields (mathematics)</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Maximum likelihood estimation</topic><topic>Monte Carlo simulation</topic><topic>Parameter estimation</topic><topic>Statistical inference</topic><toplevel>online_resources</toplevel><creatorcontrib>Borisenko, Alexander</creatorcontrib><creatorcontrib>Byshkin, Maksym</creatorcontrib><creatorcontrib>Lomi, Alessandro</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borisenko, Alexander</au><au>Byshkin, Maksym</au><au>Lomi, Alessandro</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Simple Algorithm for Scalable Monte Carlo Inference</atitle><jtitle>arXiv.org</jtitle><date>2020-02-11</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>The methods of statistical physics are widely used for modelling complex networks. Building on the recently proposed Equilibrium Expectation approach, we derive a simple and efficient algorithm for maximum likelihood estimation (MLE) of parameters of exponential family distributions - a family of statistical models, that includes Ising model, Markov Random Field and Exponential Random Graph models. Computational experiments and analysis of empirical data demonstrate that the algorithm increases by orders of magnitude the size of network data amenable to Monte Carlo based inference. We report results suggesting that the applicability of the algorithm may readily be extended to the analysis of large samples of dependent observations commonly found in biology, sociology, astrophysics, and ecology.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2163286370
source Free E- Journals
subjects Algorithms
Computer simulation
Divergence
Fields (mathematics)
Markov analysis
Markov chains
Maximum likelihood estimation
Monte Carlo simulation
Parameter estimation
Statistical inference
title A Simple Algorithm for Scalable Monte Carlo Inference
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A42%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Simple%20Algorithm%20for%20Scalable%20Monte%20Carlo%20Inference&rft.jtitle=arXiv.org&rft.au=Borisenko,%20Alexander&rft.date=2020-02-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2163286370%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2163286370&rft_id=info:pmid/&rfr_iscdi=true