Groups of S-Units and the Problem of Periodicity of Continued Fractions in Hyperelliptic Fields
We construct a theory of periodic and quasiperiodic functional continued fractions in the field k (( h )) for a linear polynomial h and in hyperelliptic fields. In addition, we establish a relationship between continued fractions in hyperelliptic fields, torsion in the Jacobians of the corresponding...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Steklov Institute of Mathematics 2018-08, Vol.302 (1), p.336-357 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 357 |
---|---|
container_issue | 1 |
container_start_page | 336 |
container_title | Proceedings of the Steklov Institute of Mathematics |
container_volume | 302 |
creator | Platonov, V. P. Petrunin, M. M. |
description | We construct a theory of periodic and quasiperiodic functional continued fractions in the field
k
((
h
)) for a linear polynomial
h
and in hyperelliptic fields. In addition, we establish a relationship between continued fractions in hyperelliptic fields, torsion in the Jacobians of the corresponding hyperelliptic curves, and
S
-units for appropriate sets
S
. We prove the periodicity of quasiperiodic elements of the form
f
/
d
h
s
, where s is an integer, the polynomial f defines a hyperelliptic field, and the polynomial d is a divisor of f; such elements are important from the viewpoint of the torsion and periodicity problems. In particular, we show that the quasiperiodic element
f
is periodic. We also analyze the continued fraction expansion of the key element
f
/
h
g
+
1
, which defines the set of quasiperiodic elements of a hyperelliptic field. |
doi_str_mv | 10.1134/S0081543818060184 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2163188429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2163188429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-6ca0675219612daa6c1d040cee9615c050e5ff397ca615938bae0368bdee37073</originalsourceid><addsrcrecordid>eNp1UM9LwzAUDqLgnP4B3gKeq3lNk6ZHGW4TBg7mziVLXzWjS2qSHfbf2zLBg3h6fO_7BR8h98AeAXjxtGFMgSi4AsUkA1VckAkIDpmSTFySyUhnI39NbmLcM1aIsqgmpF4Ef-wj9S3dZFtnU6TaNTR9Il0Hv-vwMFJrDNY31th0GuHMu2TdERs6D9ok612k1tHlqceAXWf7ZA2dW-yaeEuuWt1FvPu5U7Kdv7zPltnqbfE6e15lhoNMmTSayVLkUEnIG62lgYYVzCAOD2GYYCjallel0QOuuNppZFyqXYPIS1byKXk45_bBfx0xpnrvj8ENlXUOkoNSRV4NKjirTPAxBmzrPtiDDqcaWD3uWP_ZcfDkZ08ctO4Dw2_y_6ZvqMpzxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2163188429</pqid></control><display><type>article</type><title>Groups of S-Units and the Problem of Periodicity of Continued Fractions in Hyperelliptic Fields</title><source>SpringerLink Journals - AutoHoldings</source><creator>Platonov, V. P. ; Petrunin, M. M.</creator><creatorcontrib>Platonov, V. P. ; Petrunin, M. M.</creatorcontrib><description>We construct a theory of periodic and quasiperiodic functional continued fractions in the field
k
((
h
)) for a linear polynomial
h
and in hyperelliptic fields. In addition, we establish a relationship between continued fractions in hyperelliptic fields, torsion in the Jacobians of the corresponding hyperelliptic curves, and
S
-units for appropriate sets
S
. We prove the periodicity of quasiperiodic elements of the form
f
/
d
h
s
, where s is an integer, the polynomial f defines a hyperelliptic field, and the polynomial d is a divisor of f; such elements are important from the viewpoint of the torsion and periodicity problems. In particular, we show that the quasiperiodic element
f
is periodic. We also analyze the continued fraction expansion of the key element
f
/
h
g
+
1
, which defines the set of quasiperiodic elements of a hyperelliptic field.</description><identifier>ISSN: 0081-5438</identifier><identifier>EISSN: 1531-8605</identifier><identifier>DOI: 10.1134/S0081543818060184</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Jacobians ; Mathematics ; Mathematics and Statistics ; Periodic variations ; Polynomials ; Torsion</subject><ispartof>Proceedings of the Steklov Institute of Mathematics, 2018-08, Vol.302 (1), p.336-357</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-6ca0675219612daa6c1d040cee9615c050e5ff397ca615938bae0368bdee37073</citedby><cites>FETCH-LOGICAL-c316t-6ca0675219612daa6c1d040cee9615c050e5ff397ca615938bae0368bdee37073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0081543818060184$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0081543818060184$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23929,23930,25139,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Platonov, V. P.</creatorcontrib><creatorcontrib>Petrunin, M. M.</creatorcontrib><title>Groups of S-Units and the Problem of Periodicity of Continued Fractions in Hyperelliptic Fields</title><title>Proceedings of the Steklov Institute of Mathematics</title><addtitle>Proc. Steklov Inst. Math</addtitle><description>We construct a theory of periodic and quasiperiodic functional continued fractions in the field
k
((
h
)) for a linear polynomial
h
and in hyperelliptic fields. In addition, we establish a relationship between continued fractions in hyperelliptic fields, torsion in the Jacobians of the corresponding hyperelliptic curves, and
S
-units for appropriate sets
S
. We prove the periodicity of quasiperiodic elements of the form
f
/
d
h
s
, where s is an integer, the polynomial f defines a hyperelliptic field, and the polynomial d is a divisor of f; such elements are important from the viewpoint of the torsion and periodicity problems. In particular, we show that the quasiperiodic element
f
is periodic. We also analyze the continued fraction expansion of the key element
f
/
h
g
+
1
, which defines the set of quasiperiodic elements of a hyperelliptic field.</description><subject>Jacobians</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Periodic variations</subject><subject>Polynomials</subject><subject>Torsion</subject><issn>0081-5438</issn><issn>1531-8605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UM9LwzAUDqLgnP4B3gKeq3lNk6ZHGW4TBg7mziVLXzWjS2qSHfbf2zLBg3h6fO_7BR8h98AeAXjxtGFMgSi4AsUkA1VckAkIDpmSTFySyUhnI39NbmLcM1aIsqgmpF4Ef-wj9S3dZFtnU6TaNTR9Il0Hv-vwMFJrDNY31th0GuHMu2TdERs6D9ok612k1tHlqceAXWf7ZA2dW-yaeEuuWt1FvPu5U7Kdv7zPltnqbfE6e15lhoNMmTSayVLkUEnIG62lgYYVzCAOD2GYYCjallel0QOuuNppZFyqXYPIS1byKXk45_bBfx0xpnrvj8ENlXUOkoNSRV4NKjirTPAxBmzrPtiDDqcaWD3uWP_ZcfDkZ08ctO4Dw2_y_6ZvqMpzxA</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Platonov, V. P.</creator><creator>Petrunin, M. M.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180801</creationdate><title>Groups of S-Units and the Problem of Periodicity of Continued Fractions in Hyperelliptic Fields</title><author>Platonov, V. P. ; Petrunin, M. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-6ca0675219612daa6c1d040cee9615c050e5ff397ca615938bae0368bdee37073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Jacobians</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Periodic variations</topic><topic>Polynomials</topic><topic>Torsion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Platonov, V. P.</creatorcontrib><creatorcontrib>Petrunin, M. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the Steklov Institute of Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Platonov, V. P.</au><au>Petrunin, M. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Groups of S-Units and the Problem of Periodicity of Continued Fractions in Hyperelliptic Fields</atitle><jtitle>Proceedings of the Steklov Institute of Mathematics</jtitle><stitle>Proc. Steklov Inst. Math</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>302</volume><issue>1</issue><spage>336</spage><epage>357</epage><pages>336-357</pages><issn>0081-5438</issn><eissn>1531-8605</eissn><abstract>We construct a theory of periodic and quasiperiodic functional continued fractions in the field
k
((
h
)) for a linear polynomial
h
and in hyperelliptic fields. In addition, we establish a relationship between continued fractions in hyperelliptic fields, torsion in the Jacobians of the corresponding hyperelliptic curves, and
S
-units for appropriate sets
S
. We prove the periodicity of quasiperiodic elements of the form
f
/
d
h
s
, where s is an integer, the polynomial f defines a hyperelliptic field, and the polynomial d is a divisor of f; such elements are important from the viewpoint of the torsion and periodicity problems. In particular, we show that the quasiperiodic element
f
is periodic. We also analyze the continued fraction expansion of the key element
f
/
h
g
+
1
, which defines the set of quasiperiodic elements of a hyperelliptic field.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0081543818060184</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0081-5438 |
ispartof | Proceedings of the Steklov Institute of Mathematics, 2018-08, Vol.302 (1), p.336-357 |
issn | 0081-5438 1531-8605 |
language | eng |
recordid | cdi_proquest_journals_2163188429 |
source | SpringerLink Journals - AutoHoldings |
subjects | Jacobians Mathematics Mathematics and Statistics Periodic variations Polynomials Torsion |
title | Groups of S-Units and the Problem of Periodicity of Continued Fractions in Hyperelliptic Fields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A46%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Groups%20of%20S-Units%20and%20the%20Problem%20of%20Periodicity%20of%20Continued%20Fractions%20in%20Hyperelliptic%20Fields&rft.jtitle=Proceedings%20of%20the%20Steklov%20Institute%20of%20Mathematics&rft.au=Platonov,%20V.%20P.&rft.date=2018-08-01&rft.volume=302&rft.issue=1&rft.spage=336&rft.epage=357&rft.pages=336-357&rft.issn=0081-5438&rft.eissn=1531-8605&rft_id=info:doi/10.1134/S0081543818060184&rft_dat=%3Cproquest_cross%3E2163188429%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2163188429&rft_id=info:pmid/&rfr_iscdi=true |