Physics-based prognostics of lithium-ion battery using non-linear least squares with dynamic bounds

•A physics-based approach to lithium-ion battery prognostics is proposed.•It considers degradation mechanisms in remaining useful life (RUL) prediction.•A non-linear least squares method with dynamic bounds is employed in the approach.•The proposed approach predicts RULs more accurately than a capac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reliability engineering & system safety 2019-02, Vol.182, p.1-12
Hauptverfasser: Downey, Austin, Lui, Yu-Hui, Hu, Chao, Laflamme, Simon, Hu, Shan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 1
container_title Reliability engineering & system safety
container_volume 182
creator Downey, Austin
Lui, Yu-Hui
Hu, Chao
Laflamme, Simon
Hu, Shan
description •A physics-based approach to lithium-ion battery prognostics is proposed.•It considers degradation mechanisms in remaining useful life (RUL) prediction.•A non-linear least squares method with dynamic bounds is employed in the approach.•The proposed approach predicts RULs more accurately than a capacity-based approach. Real-time health diagnostics/prognostics and predictive maintenance/control of lithium-ion (Li-ion) batteries are essential to reliable and safe battery operation. This paper presents a physics-based (or mechanistic) approach to Li-ion battery prognostics, which enables online prediction of remaining useful life (RUL) with consideration of multiple concurrent degradation mechanisms. In the proposed approach, robust online prediction of RUL is achieved by employing a non-linear least squares method with dynamic bounds that traces the evolution of individual degradation parameters. The novelty of this approach lies in its ability to incorporate mechanistic degradation analysis results into RUL predictions using nonlinear models. Results from a simulation study with eight Li-ion battery cells demonstrate that the mechanistic prognostics approach produces more accurate RUL predictions than a traditional capacity-based prognostics approach in 78 of the 80 cases considered (97.5% of the time). Additionally, it is shown that the use of dynamic bounds ensures a low level of uncertainty in the prediction throughout the entire life of a cell.
doi_str_mv 10.1016/j.ress.2018.09.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2163000445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0951832018302928</els_id><sourcerecordid>2163000445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-cebcb96894bcb23bddadba2864ea689f931e0b853a2eac0c382d4fa56676c4583</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKJgrf4BTwHPu-Zjd5sFL1L8goIe9Byyyds2pU3avF2l_96UevY0MMy8NzOE3HJWcsab-3WZALEUjKuStWWGMzLhatYWTMnmnExYW_NCScEuyRXimjFWtfVsQuzH6oDeYtEZBEd3KS5DxCEzNPZ044eVH7eFj4F2ZhggHeiIPixpiKHY-AAm0Q0YHCjuR5Mz0J9soe4QzNZb2sUxOLwmF73ZINz84ZR8PT99zl-LxfvL2_xxUVg5E0NhobNd26i2yihk55xxnRGqqcBktm8lB9apWhoBxjIrlXBVb-qmmTW2qpWckrvT3dxiPwIOeh3HFPJLLXgjj52rOqvESWVTREzQ613yW5MOmjN9HFOv9XFMfRxTs1ZnyKaHkwly_m8PSaP1ECw4n8AO2kX_n_0XcquARw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2163000445</pqid></control><display><type>article</type><title>Physics-based prognostics of lithium-ion battery using non-linear least squares with dynamic bounds</title><source>Access via ScienceDirect (Elsevier)</source><creator>Downey, Austin ; Lui, Yu-Hui ; Hu, Chao ; Laflamme, Simon ; Hu, Shan</creator><creatorcontrib>Downey, Austin ; Lui, Yu-Hui ; Hu, Chao ; Laflamme, Simon ; Hu, Shan</creatorcontrib><description>•A physics-based approach to lithium-ion battery prognostics is proposed.•It considers degradation mechanisms in remaining useful life (RUL) prediction.•A non-linear least squares method with dynamic bounds is employed in the approach.•The proposed approach predicts RULs more accurately than a capacity-based approach. Real-time health diagnostics/prognostics and predictive maintenance/control of lithium-ion (Li-ion) batteries are essential to reliable and safe battery operation. This paper presents a physics-based (or mechanistic) approach to Li-ion battery prognostics, which enables online prediction of remaining useful life (RUL) with consideration of multiple concurrent degradation mechanisms. In the proposed approach, robust online prediction of RUL is achieved by employing a non-linear least squares method with dynamic bounds that traces the evolution of individual degradation parameters. The novelty of this approach lies in its ability to incorporate mechanistic degradation analysis results into RUL predictions using nonlinear models. Results from a simulation study with eight Li-ion battery cells demonstrate that the mechanistic prognostics approach produces more accurate RUL predictions than a traditional capacity-based prognostics approach in 78 of the 80 cases considered (97.5% of the time). Additionally, it is shown that the use of dynamic bounds ensures a low level of uncertainty in the prediction throughout the entire life of a cell.</description><identifier>ISSN: 0951-8320</identifier><identifier>EISSN: 1879-0836</identifier><identifier>DOI: 10.1016/j.ress.2018.09.018</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Batteries ; Computer simulation ; Consumer electronics ; Degradation ; Degradation mechanisms ; Dynamic bounds ; Internet ; Least squares method ; Lithium ; Lithium-ion batteries ; Lithium-ion battery ; Low level ; Non-linear least squares ; Physics ; Predictive control ; Predictive maintenance ; Prognostics ; Rechargeable batteries ; Reliability engineering</subject><ispartof>Reliability engineering &amp; system safety, 2019-02, Vol.182, p.1-12</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-cebcb96894bcb23bddadba2864ea689f931e0b853a2eac0c382d4fa56676c4583</citedby><cites>FETCH-LOGICAL-c372t-cebcb96894bcb23bddadba2864ea689f931e0b853a2eac0c382d4fa56676c4583</cites><orcidid>0000-0002-5524-2416 ; 0000-0001-9228-7675</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ress.2018.09.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Downey, Austin</creatorcontrib><creatorcontrib>Lui, Yu-Hui</creatorcontrib><creatorcontrib>Hu, Chao</creatorcontrib><creatorcontrib>Laflamme, Simon</creatorcontrib><creatorcontrib>Hu, Shan</creatorcontrib><title>Physics-based prognostics of lithium-ion battery using non-linear least squares with dynamic bounds</title><title>Reliability engineering &amp; system safety</title><description>•A physics-based approach to lithium-ion battery prognostics is proposed.•It considers degradation mechanisms in remaining useful life (RUL) prediction.•A non-linear least squares method with dynamic bounds is employed in the approach.•The proposed approach predicts RULs more accurately than a capacity-based approach. Real-time health diagnostics/prognostics and predictive maintenance/control of lithium-ion (Li-ion) batteries are essential to reliable and safe battery operation. This paper presents a physics-based (or mechanistic) approach to Li-ion battery prognostics, which enables online prediction of remaining useful life (RUL) with consideration of multiple concurrent degradation mechanisms. In the proposed approach, robust online prediction of RUL is achieved by employing a non-linear least squares method with dynamic bounds that traces the evolution of individual degradation parameters. The novelty of this approach lies in its ability to incorporate mechanistic degradation analysis results into RUL predictions using nonlinear models. Results from a simulation study with eight Li-ion battery cells demonstrate that the mechanistic prognostics approach produces more accurate RUL predictions than a traditional capacity-based prognostics approach in 78 of the 80 cases considered (97.5% of the time). Additionally, it is shown that the use of dynamic bounds ensures a low level of uncertainty in the prediction throughout the entire life of a cell.</description><subject>Batteries</subject><subject>Computer simulation</subject><subject>Consumer electronics</subject><subject>Degradation</subject><subject>Degradation mechanisms</subject><subject>Dynamic bounds</subject><subject>Internet</subject><subject>Least squares method</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Lithium-ion battery</subject><subject>Low level</subject><subject>Non-linear least squares</subject><subject>Physics</subject><subject>Predictive control</subject><subject>Predictive maintenance</subject><subject>Prognostics</subject><subject>Rechargeable batteries</subject><subject>Reliability engineering</subject><issn>0951-8320</issn><issn>1879-0836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEUDKJgrf4BTwHPu-Zjd5sFL1L8goIe9Byyyds2pU3avF2l_96UevY0MMy8NzOE3HJWcsab-3WZALEUjKuStWWGMzLhatYWTMnmnExYW_NCScEuyRXimjFWtfVsQuzH6oDeYtEZBEd3KS5DxCEzNPZ044eVH7eFj4F2ZhggHeiIPixpiKHY-AAm0Q0YHCjuR5Mz0J9soe4QzNZb2sUxOLwmF73ZINz84ZR8PT99zl-LxfvL2_xxUVg5E0NhobNd26i2yihk55xxnRGqqcBktm8lB9apWhoBxjIrlXBVb-qmmTW2qpWckrvT3dxiPwIOeh3HFPJLLXgjj52rOqvESWVTREzQ613yW5MOmjN9HFOv9XFMfRxTs1ZnyKaHkwly_m8PSaP1ECw4n8AO2kX_n_0XcquARw</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Downey, Austin</creator><creator>Lui, Yu-Hui</creator><creator>Hu, Chao</creator><creator>Laflamme, Simon</creator><creator>Hu, Shan</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5524-2416</orcidid><orcidid>https://orcid.org/0000-0001-9228-7675</orcidid></search><sort><creationdate>201902</creationdate><title>Physics-based prognostics of lithium-ion battery using non-linear least squares with dynamic bounds</title><author>Downey, Austin ; Lui, Yu-Hui ; Hu, Chao ; Laflamme, Simon ; Hu, Shan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-cebcb96894bcb23bddadba2864ea689f931e0b853a2eac0c382d4fa56676c4583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Batteries</topic><topic>Computer simulation</topic><topic>Consumer electronics</topic><topic>Degradation</topic><topic>Degradation mechanisms</topic><topic>Dynamic bounds</topic><topic>Internet</topic><topic>Least squares method</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Lithium-ion battery</topic><topic>Low level</topic><topic>Non-linear least squares</topic><topic>Physics</topic><topic>Predictive control</topic><topic>Predictive maintenance</topic><topic>Prognostics</topic><topic>Rechargeable batteries</topic><topic>Reliability engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Downey, Austin</creatorcontrib><creatorcontrib>Lui, Yu-Hui</creatorcontrib><creatorcontrib>Hu, Chao</creatorcontrib><creatorcontrib>Laflamme, Simon</creatorcontrib><creatorcontrib>Hu, Shan</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Environment Abstracts</collection><jtitle>Reliability engineering &amp; system safety</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Downey, Austin</au><au>Lui, Yu-Hui</au><au>Hu, Chao</au><au>Laflamme, Simon</au><au>Hu, Shan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physics-based prognostics of lithium-ion battery using non-linear least squares with dynamic bounds</atitle><jtitle>Reliability engineering &amp; system safety</jtitle><date>2019-02</date><risdate>2019</risdate><volume>182</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0951-8320</issn><eissn>1879-0836</eissn><abstract>•A physics-based approach to lithium-ion battery prognostics is proposed.•It considers degradation mechanisms in remaining useful life (RUL) prediction.•A non-linear least squares method with dynamic bounds is employed in the approach.•The proposed approach predicts RULs more accurately than a capacity-based approach. Real-time health diagnostics/prognostics and predictive maintenance/control of lithium-ion (Li-ion) batteries are essential to reliable and safe battery operation. This paper presents a physics-based (or mechanistic) approach to Li-ion battery prognostics, which enables online prediction of remaining useful life (RUL) with consideration of multiple concurrent degradation mechanisms. In the proposed approach, robust online prediction of RUL is achieved by employing a non-linear least squares method with dynamic bounds that traces the evolution of individual degradation parameters. The novelty of this approach lies in its ability to incorporate mechanistic degradation analysis results into RUL predictions using nonlinear models. Results from a simulation study with eight Li-ion battery cells demonstrate that the mechanistic prognostics approach produces more accurate RUL predictions than a traditional capacity-based prognostics approach in 78 of the 80 cases considered (97.5% of the time). Additionally, it is shown that the use of dynamic bounds ensures a low level of uncertainty in the prediction throughout the entire life of a cell.</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ress.2018.09.018</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5524-2416</orcidid><orcidid>https://orcid.org/0000-0001-9228-7675</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0951-8320
ispartof Reliability engineering & system safety, 2019-02, Vol.182, p.1-12
issn 0951-8320
1879-0836
language eng
recordid cdi_proquest_journals_2163000445
source Access via ScienceDirect (Elsevier)
subjects Batteries
Computer simulation
Consumer electronics
Degradation
Degradation mechanisms
Dynamic bounds
Internet
Least squares method
Lithium
Lithium-ion batteries
Lithium-ion battery
Low level
Non-linear least squares
Physics
Predictive control
Predictive maintenance
Prognostics
Rechargeable batteries
Reliability engineering
title Physics-based prognostics of lithium-ion battery using non-linear least squares with dynamic bounds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T15%3A38%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physics-based%20prognostics%20of%20lithium-ion%20battery%20using%20non-linear%20least%20squares%20with%20dynamic%20bounds&rft.jtitle=Reliability%20engineering%20&%20system%20safety&rft.au=Downey,%20Austin&rft.date=2019-02&rft.volume=182&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0951-8320&rft.eissn=1879-0836&rft_id=info:doi/10.1016/j.ress.2018.09.018&rft_dat=%3Cproquest_cross%3E2163000445%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2163000445&rft_id=info:pmid/&rft_els_id=S0951832018302928&rfr_iscdi=true