Nanoengineering of metallic alloys for machining tools: Multiscale computational and in situ TEM investigation of mechanisms
Influence of carbon nanotubes (CNT), hexagonal boron nitride (h-BN) and tungsten carbide (WC) nano-reinforcement on the mechanical and tribological properties of the Cu-Ni binder alloy was investigated experimentally and numerically. In situ TEM and multiscale micromechanical finite element (FE) mod...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2019-01, Vol.739, p.480-490 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 490 |
---|---|
container_issue | |
container_start_page | 480 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 739 |
creator | Vorotilo, S. Loginov, P. Mishnaevsky, L. Sidorenko, D. Levashov, E. |
description | Influence of carbon nanotubes (CNT), hexagonal boron nitride (h-BN) and tungsten carbide (WC) nano-reinforcement on the mechanical and tribological properties of the Cu-Ni binder alloy was investigated experimentally and numerically. In situ TEM and multiscale micromechanical finite element (FE) modeling were used to study the mechanisms of deformation of the nanomodified binder. Сomplex reinforcement by 0.1% CNT + 0.1% hBN + 0.69% WC increases the tensile strength of the materials from 155 to 346 MPa, bending strength from 420 to 832 MPs, hardness from 2.1 to 2.4 GPa and elastic modulus from 98 to 123 GPa. The complex reinforcement changes the wear mechanism and significantly enhanced the tribological properties of the binders, decreasing the coefficient of friction from 0.47 to 0.28 and wear rate from 12.3 to 6.7·10−6 mm3/N/m. The failure of the nanomodified binder was found to be caused by the emergence and propagation of microcracks along the interface between hBN particles and the matrix. Carbon nanotubes inhibit the propagation of cracks, significantly increasing the mechanical and tribological properties of Cu-Ni binders. |
doi_str_mv | 10.1016/j.msea.2018.10.070 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2162997067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509318314412</els_id><sourcerecordid>2162997067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-90d939b2497d84ea659099ef6e0d5f85c053b02889a0ab3f0e0cd08b2ab0f73e3</originalsourceid><addsrcrecordid>eNp9UE1rGzEUFCGFOEn_QE-CnNd5kvZLJZcS3KaQNBfnLLTat47MruRKWoOhPz7auude3nvMmxmGIeQLgzUDVt_v11NEvebA2gysoYELsmJtI4pSivqSrEByVlQgxRW5jnEPAKyEakX-_NLOo9tZhxis21E_0AmTHkdraJ7-FOngA520ebduISTvx_iVvsxjstHoEanx02FOOlnv9Ei166l1NNo00-3mJd9HjMnu_v7P9uZdOxuneEs-DXqM-PnfviFv3zfbx6fi-fXHz8dvz4URvE2FhF4K2fFSNn1boq4rCVLiUCP01dBWBirRAW9bqUF3YgAE00Pbcd3B0AgUN-Tu7HsI_vec06i9n0MOGxVnNZeygbrJLH5mmeBjDDioQ7CTDifFQC0tq71aWlZLywuWW86ih7MIc_6jxaCisegM9jagSar39n_yD-smiCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2162997067</pqid></control><display><type>article</type><title>Nanoengineering of metallic alloys for machining tools: Multiscale computational and in situ TEM investigation of mechanisms</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Vorotilo, S. ; Loginov, P. ; Mishnaevsky, L. ; Sidorenko, D. ; Levashov, E.</creator><creatorcontrib>Vorotilo, S. ; Loginov, P. ; Mishnaevsky, L. ; Sidorenko, D. ; Levashov, E.</creatorcontrib><description>Influence of carbon nanotubes (CNT), hexagonal boron nitride (h-BN) and tungsten carbide (WC) nano-reinforcement on the mechanical and tribological properties of the Cu-Ni binder alloy was investigated experimentally and numerically. In situ TEM and multiscale micromechanical finite element (FE) modeling were used to study the mechanisms of deformation of the nanomodified binder. Сomplex reinforcement by 0.1% CNT + 0.1% hBN + 0.69% WC increases the tensile strength of the materials from 155 to 346 MPa, bending strength from 420 to 832 MPs, hardness from 2.1 to 2.4 GPa and elastic modulus from 98 to 123 GPa. The complex reinforcement changes the wear mechanism and significantly enhanced the tribological properties of the binders, decreasing the coefficient of friction from 0.47 to 0.28 and wear rate from 12.3 to 6.7·10−6 mm3/N/m. The failure of the nanomodified binder was found to be caused by the emergence and propagation of microcracks along the interface between hBN particles and the matrix. Carbon nanotubes inhibit the propagation of cracks, significantly increasing the mechanical and tribological properties of Cu-Ni binders.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2018.10.070</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Alloys ; Bend strength ; Boron nitride ; Carbon nanotubes ; Coefficient of friction ; Copper base alloys ; Copper nickel alloys ; Crack propagation ; Cracks ; Deformation mechanisms ; FEM ; Finite element analysis ; Finite element method ; In situ TEM ; Machining ; Mathematical analysis ; Mathematical models ; Mechanical properties ; Microcracks ; Modulus of elasticity ; Multiscale analysis ; Nanoengineering ; Nanoparticulate ; Nickel ; Reinforcement ; Software ; Tensile strength ; Tribological properties ; Tribology ; Tungsten carbide ; Wear mechanisms ; Wear rate</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2019-01, Vol.739, p.480-490</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 2, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-90d939b2497d84ea659099ef6e0d5f85c053b02889a0ab3f0e0cd08b2ab0f73e3</citedby><cites>FETCH-LOGICAL-c328t-90d939b2497d84ea659099ef6e0d5f85c053b02889a0ab3f0e0cd08b2ab0f73e3</cites><orcidid>0000-0002-6731-1466 ; 0000-0003-2505-2918 ; 0000-0003-3193-4212 ; 0000-0003-0345-190X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0921509318314412$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Vorotilo, S.</creatorcontrib><creatorcontrib>Loginov, P.</creatorcontrib><creatorcontrib>Mishnaevsky, L.</creatorcontrib><creatorcontrib>Sidorenko, D.</creatorcontrib><creatorcontrib>Levashov, E.</creatorcontrib><title>Nanoengineering of metallic alloys for machining tools: Multiscale computational and in situ TEM investigation of mechanisms</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>Influence of carbon nanotubes (CNT), hexagonal boron nitride (h-BN) and tungsten carbide (WC) nano-reinforcement on the mechanical and tribological properties of the Cu-Ni binder alloy was investigated experimentally and numerically. In situ TEM and multiscale micromechanical finite element (FE) modeling were used to study the mechanisms of deformation of the nanomodified binder. Сomplex reinforcement by 0.1% CNT + 0.1% hBN + 0.69% WC increases the tensile strength of the materials from 155 to 346 MPa, bending strength from 420 to 832 MPs, hardness from 2.1 to 2.4 GPa and elastic modulus from 98 to 123 GPa. The complex reinforcement changes the wear mechanism and significantly enhanced the tribological properties of the binders, decreasing the coefficient of friction from 0.47 to 0.28 and wear rate from 12.3 to 6.7·10−6 mm3/N/m. The failure of the nanomodified binder was found to be caused by the emergence and propagation of microcracks along the interface between hBN particles and the matrix. Carbon nanotubes inhibit the propagation of cracks, significantly increasing the mechanical and tribological properties of Cu-Ni binders.</description><subject>Alloys</subject><subject>Bend strength</subject><subject>Boron nitride</subject><subject>Carbon nanotubes</subject><subject>Coefficient of friction</subject><subject>Copper base alloys</subject><subject>Copper nickel alloys</subject><subject>Crack propagation</subject><subject>Cracks</subject><subject>Deformation mechanisms</subject><subject>FEM</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>In situ TEM</subject><subject>Machining</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Microcracks</subject><subject>Modulus of elasticity</subject><subject>Multiscale analysis</subject><subject>Nanoengineering</subject><subject>Nanoparticulate</subject><subject>Nickel</subject><subject>Reinforcement</subject><subject>Software</subject><subject>Tensile strength</subject><subject>Tribological properties</subject><subject>Tribology</subject><subject>Tungsten carbide</subject><subject>Wear mechanisms</subject><subject>Wear rate</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UE1rGzEUFCGFOEn_QE-CnNd5kvZLJZcS3KaQNBfnLLTat47MruRKWoOhPz7auude3nvMmxmGIeQLgzUDVt_v11NEvebA2gysoYELsmJtI4pSivqSrEByVlQgxRW5jnEPAKyEakX-_NLOo9tZhxis21E_0AmTHkdraJ7-FOngA520ebduISTvx_iVvsxjstHoEanx02FOOlnv9Ei166l1NNo00-3mJd9HjMnu_v7P9uZdOxuneEs-DXqM-PnfviFv3zfbx6fi-fXHz8dvz4URvE2FhF4K2fFSNn1boq4rCVLiUCP01dBWBirRAW9bqUF3YgAE00Pbcd3B0AgUN-Tu7HsI_vec06i9n0MOGxVnNZeygbrJLH5mmeBjDDioQ7CTDifFQC0tq71aWlZLywuWW86ih7MIc_6jxaCisegM9jagSar39n_yD-smiCQ</recordid><startdate>20190102</startdate><enddate>20190102</enddate><creator>Vorotilo, S.</creator><creator>Loginov, P.</creator><creator>Mishnaevsky, L.</creator><creator>Sidorenko, D.</creator><creator>Levashov, E.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-6731-1466</orcidid><orcidid>https://orcid.org/0000-0003-2505-2918</orcidid><orcidid>https://orcid.org/0000-0003-3193-4212</orcidid><orcidid>https://orcid.org/0000-0003-0345-190X</orcidid></search><sort><creationdate>20190102</creationdate><title>Nanoengineering of metallic alloys for machining tools: Multiscale computational and in situ TEM investigation of mechanisms</title><author>Vorotilo, S. ; Loginov, P. ; Mishnaevsky, L. ; Sidorenko, D. ; Levashov, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-90d939b2497d84ea659099ef6e0d5f85c053b02889a0ab3f0e0cd08b2ab0f73e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alloys</topic><topic>Bend strength</topic><topic>Boron nitride</topic><topic>Carbon nanotubes</topic><topic>Coefficient of friction</topic><topic>Copper base alloys</topic><topic>Copper nickel alloys</topic><topic>Crack propagation</topic><topic>Cracks</topic><topic>Deformation mechanisms</topic><topic>FEM</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>In situ TEM</topic><topic>Machining</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Microcracks</topic><topic>Modulus of elasticity</topic><topic>Multiscale analysis</topic><topic>Nanoengineering</topic><topic>Nanoparticulate</topic><topic>Nickel</topic><topic>Reinforcement</topic><topic>Software</topic><topic>Tensile strength</topic><topic>Tribological properties</topic><topic>Tribology</topic><topic>Tungsten carbide</topic><topic>Wear mechanisms</topic><topic>Wear rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vorotilo, S.</creatorcontrib><creatorcontrib>Loginov, P.</creatorcontrib><creatorcontrib>Mishnaevsky, L.</creatorcontrib><creatorcontrib>Sidorenko, D.</creatorcontrib><creatorcontrib>Levashov, E.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vorotilo, S.</au><au>Loginov, P.</au><au>Mishnaevsky, L.</au><au>Sidorenko, D.</au><au>Levashov, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoengineering of metallic alloys for machining tools: Multiscale computational and in situ TEM investigation of mechanisms</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2019-01-02</date><risdate>2019</risdate><volume>739</volume><spage>480</spage><epage>490</epage><pages>480-490</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Influence of carbon nanotubes (CNT), hexagonal boron nitride (h-BN) and tungsten carbide (WC) nano-reinforcement on the mechanical and tribological properties of the Cu-Ni binder alloy was investigated experimentally and numerically. In situ TEM and multiscale micromechanical finite element (FE) modeling were used to study the mechanisms of deformation of the nanomodified binder. Сomplex reinforcement by 0.1% CNT + 0.1% hBN + 0.69% WC increases the tensile strength of the materials from 155 to 346 MPa, bending strength from 420 to 832 MPs, hardness from 2.1 to 2.4 GPa and elastic modulus from 98 to 123 GPa. The complex reinforcement changes the wear mechanism and significantly enhanced the tribological properties of the binders, decreasing the coefficient of friction from 0.47 to 0.28 and wear rate from 12.3 to 6.7·10−6 mm3/N/m. The failure of the nanomodified binder was found to be caused by the emergence and propagation of microcracks along the interface between hBN particles and the matrix. Carbon nanotubes inhibit the propagation of cracks, significantly increasing the mechanical and tribological properties of Cu-Ni binders.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2018.10.070</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6731-1466</orcidid><orcidid>https://orcid.org/0000-0003-2505-2918</orcidid><orcidid>https://orcid.org/0000-0003-3193-4212</orcidid><orcidid>https://orcid.org/0000-0003-0345-190X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2019-01, Vol.739, p.480-490 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_journals_2162997067 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Alloys Bend strength Boron nitride Carbon nanotubes Coefficient of friction Copper base alloys Copper nickel alloys Crack propagation Cracks Deformation mechanisms FEM Finite element analysis Finite element method In situ TEM Machining Mathematical analysis Mathematical models Mechanical properties Microcracks Modulus of elasticity Multiscale analysis Nanoengineering Nanoparticulate Nickel Reinforcement Software Tensile strength Tribological properties Tribology Tungsten carbide Wear mechanisms Wear rate |
title | Nanoengineering of metallic alloys for machining tools: Multiscale computational and in situ TEM investigation of mechanisms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A40%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoengineering%20of%20metallic%20alloys%20for%20machining%20tools:%20Multiscale%20computational%20and%20in%20situ%20TEM%20investigation%20of%20mechanisms&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Vorotilo,%20S.&rft.date=2019-01-02&rft.volume=739&rft.spage=480&rft.epage=490&rft.pages=480-490&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2018.10.070&rft_dat=%3Cproquest_cross%3E2162997067%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2162997067&rft_id=info:pmid/&rft_els_id=S0921509318314412&rfr_iscdi=true |