Nanoengineering of metallic alloys for machining tools: Multiscale computational and in situ TEM investigation of mechanisms

Influence of carbon nanotubes (CNT), hexagonal boron nitride (h-BN) and tungsten carbide (WC) nano-reinforcement on the mechanical and tribological properties of the Cu-Ni binder alloy was investigated experimentally and numerically. In situ TEM and multiscale micromechanical finite element (FE) mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2019-01, Vol.739, p.480-490
Hauptverfasser: Vorotilo, S., Loginov, P., Mishnaevsky, L., Sidorenko, D., Levashov, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 490
container_issue
container_start_page 480
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 739
creator Vorotilo, S.
Loginov, P.
Mishnaevsky, L.
Sidorenko, D.
Levashov, E.
description Influence of carbon nanotubes (CNT), hexagonal boron nitride (h-BN) and tungsten carbide (WC) nano-reinforcement on the mechanical and tribological properties of the Cu-Ni binder alloy was investigated experimentally and numerically. In situ TEM and multiscale micromechanical finite element (FE) modeling were used to study the mechanisms of deformation of the nanomodified binder. Сomplex reinforcement by 0.1% CNT + 0.1% hBN + 0.69% WC increases the tensile strength of the materials from 155 to 346 MPa, bending strength from 420 to 832 MPs, hardness from 2.1 to 2.4 GPa and elastic modulus from 98 to 123 GPa. The complex reinforcement changes the wear mechanism and significantly enhanced the tribological properties of the binders, decreasing the coefficient of friction from 0.47 to 0.28 and wear rate from 12.3 to 6.7·10−6 mm3/N/m. The failure of the nanomodified binder was found to be caused by the emergence and propagation of microcracks along the interface between hBN particles and the matrix. Carbon nanotubes inhibit the propagation of cracks, significantly increasing the mechanical and tribological properties of Cu-Ni binders.
doi_str_mv 10.1016/j.msea.2018.10.070
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2162997067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509318314412</els_id><sourcerecordid>2162997067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-90d939b2497d84ea659099ef6e0d5f85c053b02889a0ab3f0e0cd08b2ab0f73e3</originalsourceid><addsrcrecordid>eNp9UE1rGzEUFCGFOEn_QE-CnNd5kvZLJZcS3KaQNBfnLLTat47MruRKWoOhPz7auude3nvMmxmGIeQLgzUDVt_v11NEvebA2gysoYELsmJtI4pSivqSrEByVlQgxRW5jnEPAKyEakX-_NLOo9tZhxis21E_0AmTHkdraJ7-FOngA520ebduISTvx_iVvsxjstHoEanx02FOOlnv9Ei166l1NNo00-3mJd9HjMnu_v7P9uZdOxuneEs-DXqM-PnfviFv3zfbx6fi-fXHz8dvz4URvE2FhF4K2fFSNn1boq4rCVLiUCP01dBWBirRAW9bqUF3YgAE00Pbcd3B0AgUN-Tu7HsI_vec06i9n0MOGxVnNZeygbrJLH5mmeBjDDioQ7CTDifFQC0tq71aWlZLywuWW86ih7MIc_6jxaCisegM9jagSar39n_yD-smiCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2162997067</pqid></control><display><type>article</type><title>Nanoengineering of metallic alloys for machining tools: Multiscale computational and in situ TEM investigation of mechanisms</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Vorotilo, S. ; Loginov, P. ; Mishnaevsky, L. ; Sidorenko, D. ; Levashov, E.</creator><creatorcontrib>Vorotilo, S. ; Loginov, P. ; Mishnaevsky, L. ; Sidorenko, D. ; Levashov, E.</creatorcontrib><description>Influence of carbon nanotubes (CNT), hexagonal boron nitride (h-BN) and tungsten carbide (WC) nano-reinforcement on the mechanical and tribological properties of the Cu-Ni binder alloy was investigated experimentally and numerically. In situ TEM and multiscale micromechanical finite element (FE) modeling were used to study the mechanisms of deformation of the nanomodified binder. Сomplex reinforcement by 0.1% CNT + 0.1% hBN + 0.69% WC increases the tensile strength of the materials from 155 to 346 MPa, bending strength from 420 to 832 MPs, hardness from 2.1 to 2.4 GPa and elastic modulus from 98 to 123 GPa. The complex reinforcement changes the wear mechanism and significantly enhanced the tribological properties of the binders, decreasing the coefficient of friction from 0.47 to 0.28 and wear rate from 12.3 to 6.7·10−6 mm3/N/m. The failure of the nanomodified binder was found to be caused by the emergence and propagation of microcracks along the interface between hBN particles and the matrix. Carbon nanotubes inhibit the propagation of cracks, significantly increasing the mechanical and tribological properties of Cu-Ni binders.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2018.10.070</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Alloys ; Bend strength ; Boron nitride ; Carbon nanotubes ; Coefficient of friction ; Copper base alloys ; Copper nickel alloys ; Crack propagation ; Cracks ; Deformation mechanisms ; FEM ; Finite element analysis ; Finite element method ; In situ TEM ; Machining ; Mathematical analysis ; Mathematical models ; Mechanical properties ; Microcracks ; Modulus of elasticity ; Multiscale analysis ; Nanoengineering ; Nanoparticulate ; Nickel ; Reinforcement ; Software ; Tensile strength ; Tribological properties ; Tribology ; Tungsten carbide ; Wear mechanisms ; Wear rate</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2019-01, Vol.739, p.480-490</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 2, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-90d939b2497d84ea659099ef6e0d5f85c053b02889a0ab3f0e0cd08b2ab0f73e3</citedby><cites>FETCH-LOGICAL-c328t-90d939b2497d84ea659099ef6e0d5f85c053b02889a0ab3f0e0cd08b2ab0f73e3</cites><orcidid>0000-0002-6731-1466 ; 0000-0003-2505-2918 ; 0000-0003-3193-4212 ; 0000-0003-0345-190X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0921509318314412$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Vorotilo, S.</creatorcontrib><creatorcontrib>Loginov, P.</creatorcontrib><creatorcontrib>Mishnaevsky, L.</creatorcontrib><creatorcontrib>Sidorenko, D.</creatorcontrib><creatorcontrib>Levashov, E.</creatorcontrib><title>Nanoengineering of metallic alloys for machining tools: Multiscale computational and in situ TEM investigation of mechanisms</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>Influence of carbon nanotubes (CNT), hexagonal boron nitride (h-BN) and tungsten carbide (WC) nano-reinforcement on the mechanical and tribological properties of the Cu-Ni binder alloy was investigated experimentally and numerically. In situ TEM and multiscale micromechanical finite element (FE) modeling were used to study the mechanisms of deformation of the nanomodified binder. Сomplex reinforcement by 0.1% CNT + 0.1% hBN + 0.69% WC increases the tensile strength of the materials from 155 to 346 MPa, bending strength from 420 to 832 MPs, hardness from 2.1 to 2.4 GPa and elastic modulus from 98 to 123 GPa. The complex reinforcement changes the wear mechanism and significantly enhanced the tribological properties of the binders, decreasing the coefficient of friction from 0.47 to 0.28 and wear rate from 12.3 to 6.7·10−6 mm3/N/m. The failure of the nanomodified binder was found to be caused by the emergence and propagation of microcracks along the interface between hBN particles and the matrix. Carbon nanotubes inhibit the propagation of cracks, significantly increasing the mechanical and tribological properties of Cu-Ni binders.</description><subject>Alloys</subject><subject>Bend strength</subject><subject>Boron nitride</subject><subject>Carbon nanotubes</subject><subject>Coefficient of friction</subject><subject>Copper base alloys</subject><subject>Copper nickel alloys</subject><subject>Crack propagation</subject><subject>Cracks</subject><subject>Deformation mechanisms</subject><subject>FEM</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>In situ TEM</subject><subject>Machining</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Microcracks</subject><subject>Modulus of elasticity</subject><subject>Multiscale analysis</subject><subject>Nanoengineering</subject><subject>Nanoparticulate</subject><subject>Nickel</subject><subject>Reinforcement</subject><subject>Software</subject><subject>Tensile strength</subject><subject>Tribological properties</subject><subject>Tribology</subject><subject>Tungsten carbide</subject><subject>Wear mechanisms</subject><subject>Wear rate</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UE1rGzEUFCGFOEn_QE-CnNd5kvZLJZcS3KaQNBfnLLTat47MruRKWoOhPz7auude3nvMmxmGIeQLgzUDVt_v11NEvebA2gysoYELsmJtI4pSivqSrEByVlQgxRW5jnEPAKyEakX-_NLOo9tZhxis21E_0AmTHkdraJ7-FOngA520ebduISTvx_iVvsxjstHoEanx02FOOlnv9Ei166l1NNo00-3mJd9HjMnu_v7P9uZdOxuneEs-DXqM-PnfviFv3zfbx6fi-fXHz8dvz4URvE2FhF4K2fFSNn1boq4rCVLiUCP01dBWBirRAW9bqUF3YgAE00Pbcd3B0AgUN-Tu7HsI_vec06i9n0MOGxVnNZeygbrJLH5mmeBjDDioQ7CTDifFQC0tq71aWlZLywuWW86ih7MIc_6jxaCisegM9jagSar39n_yD-smiCQ</recordid><startdate>20190102</startdate><enddate>20190102</enddate><creator>Vorotilo, S.</creator><creator>Loginov, P.</creator><creator>Mishnaevsky, L.</creator><creator>Sidorenko, D.</creator><creator>Levashov, E.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-6731-1466</orcidid><orcidid>https://orcid.org/0000-0003-2505-2918</orcidid><orcidid>https://orcid.org/0000-0003-3193-4212</orcidid><orcidid>https://orcid.org/0000-0003-0345-190X</orcidid></search><sort><creationdate>20190102</creationdate><title>Nanoengineering of metallic alloys for machining tools: Multiscale computational and in situ TEM investigation of mechanisms</title><author>Vorotilo, S. ; Loginov, P. ; Mishnaevsky, L. ; Sidorenko, D. ; Levashov, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-90d939b2497d84ea659099ef6e0d5f85c053b02889a0ab3f0e0cd08b2ab0f73e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alloys</topic><topic>Bend strength</topic><topic>Boron nitride</topic><topic>Carbon nanotubes</topic><topic>Coefficient of friction</topic><topic>Copper base alloys</topic><topic>Copper nickel alloys</topic><topic>Crack propagation</topic><topic>Cracks</topic><topic>Deformation mechanisms</topic><topic>FEM</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>In situ TEM</topic><topic>Machining</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Microcracks</topic><topic>Modulus of elasticity</topic><topic>Multiscale analysis</topic><topic>Nanoengineering</topic><topic>Nanoparticulate</topic><topic>Nickel</topic><topic>Reinforcement</topic><topic>Software</topic><topic>Tensile strength</topic><topic>Tribological properties</topic><topic>Tribology</topic><topic>Tungsten carbide</topic><topic>Wear mechanisms</topic><topic>Wear rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vorotilo, S.</creatorcontrib><creatorcontrib>Loginov, P.</creatorcontrib><creatorcontrib>Mishnaevsky, L.</creatorcontrib><creatorcontrib>Sidorenko, D.</creatorcontrib><creatorcontrib>Levashov, E.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vorotilo, S.</au><au>Loginov, P.</au><au>Mishnaevsky, L.</au><au>Sidorenko, D.</au><au>Levashov, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoengineering of metallic alloys for machining tools: Multiscale computational and in situ TEM investigation of mechanisms</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2019-01-02</date><risdate>2019</risdate><volume>739</volume><spage>480</spage><epage>490</epage><pages>480-490</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Influence of carbon nanotubes (CNT), hexagonal boron nitride (h-BN) and tungsten carbide (WC) nano-reinforcement on the mechanical and tribological properties of the Cu-Ni binder alloy was investigated experimentally and numerically. In situ TEM and multiscale micromechanical finite element (FE) modeling were used to study the mechanisms of deformation of the nanomodified binder. Сomplex reinforcement by 0.1% CNT + 0.1% hBN + 0.69% WC increases the tensile strength of the materials from 155 to 346 MPa, bending strength from 420 to 832 MPs, hardness from 2.1 to 2.4 GPa and elastic modulus from 98 to 123 GPa. The complex reinforcement changes the wear mechanism and significantly enhanced the tribological properties of the binders, decreasing the coefficient of friction from 0.47 to 0.28 and wear rate from 12.3 to 6.7·10−6 mm3/N/m. The failure of the nanomodified binder was found to be caused by the emergence and propagation of microcracks along the interface between hBN particles and the matrix. Carbon nanotubes inhibit the propagation of cracks, significantly increasing the mechanical and tribological properties of Cu-Ni binders.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2018.10.070</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6731-1466</orcidid><orcidid>https://orcid.org/0000-0003-2505-2918</orcidid><orcidid>https://orcid.org/0000-0003-3193-4212</orcidid><orcidid>https://orcid.org/0000-0003-0345-190X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2019-01, Vol.739, p.480-490
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_journals_2162997067
source Elsevier ScienceDirect Journals Complete
subjects Alloys
Bend strength
Boron nitride
Carbon nanotubes
Coefficient of friction
Copper base alloys
Copper nickel alloys
Crack propagation
Cracks
Deformation mechanisms
FEM
Finite element analysis
Finite element method
In situ TEM
Machining
Mathematical analysis
Mathematical models
Mechanical properties
Microcracks
Modulus of elasticity
Multiscale analysis
Nanoengineering
Nanoparticulate
Nickel
Reinforcement
Software
Tensile strength
Tribological properties
Tribology
Tungsten carbide
Wear mechanisms
Wear rate
title Nanoengineering of metallic alloys for machining tools: Multiscale computational and in situ TEM investigation of mechanisms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A40%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoengineering%20of%20metallic%20alloys%20for%20machining%20tools:%20Multiscale%20computational%20and%20in%20situ%20TEM%20investigation%20of%20mechanisms&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Vorotilo,%20S.&rft.date=2019-01-02&rft.volume=739&rft.spage=480&rft.epage=490&rft.pages=480-490&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2018.10.070&rft_dat=%3Cproquest_cross%3E2162997067%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2162997067&rft_id=info:pmid/&rft_els_id=S0921509318314412&rfr_iscdi=true