Ultrathin nickel boride nanosheets anchored on functionalized carbon nanotubes as bifunctional electrocatalysts for overall water splitting
Transition metal boride (TMB) materials have recently gained vast interest as a new class of catalysts. However, their catalytic performance is still limited due to poor electrical conductivity and limited specific surface area. Here, we demonstrate a generalizable approach to overcome these limitat...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2019, Vol.7 (2), p.764-774 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 774 |
---|---|
container_issue | 2 |
container_start_page | 764 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 7 |
creator | Chen, Xuncai Yu, Zixun Wei, Li Zhou, Zheng Zhai, Shengli Chen, Junsheng Wang, Yanqing Huang, Qianwei Karahan, H. Enis Liao, Xiaozhou Chen, Yuan |
description | Transition metal boride (TMB) materials have recently gained vast interest as a new class of catalysts. However, their catalytic performance is still limited due to poor electrical conductivity and limited specific surface area. Here, we demonstrate a generalizable approach to overcome these limitations by anchoring ultrathin nickel boride (Ni
x
B) sheets on the surfaces of functionalized small-diameter multi-walled carbon nanotubes (f-MWCNTs). The electrochemically active surface area and charge transfer resistance of the resulting hybrid materials (Ni
x
B/f-MWCNT) is 3.4 and 0.24 times that of the Ni
x
B nanosheets, respectively. And, Ni
x
B/f-MWCNT exhibited superior catalytic activities and stability toward both oxygen evolution and hydrogen evolution reactions. For the overall water splitting, it requires a cell voltage of 1.60 V to reach the current density of 10 mA cm
−2
, outperforming existing metal boride catalysts as well as commercial IrO
2
/Pt/C catalysts. Further, X-ray photoelectron spectroscopy revealed the strong chemical coupling between Ni
x
B and f-MWCNTs and the
in situ
formation of highly active NiOOH/Ni
x
B and Ni(OH)
2
/Ni
x
B heterojunctions, which contributes to the superior activity. The developed design concept can serve as a general approach to improve other electrocatalysts with low electrical conductivity and specific surface area, such as metal oxides, metal hydroxides, and metal–organic framework-derived materials. |
doi_str_mv | 10.1039/C8TA09130G |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2162837035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2162837035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-3dc5d9062711996daeb9c451809e94531f5eb5cb9fc29a9a46f3e6620264139c3</originalsourceid><addsrcrecordid>eNpFkEFLAzEUhIMoWGov_oKAN2H1ZbObbo6laBUKXtrzks2-takxqUlWqX_BP-2Wip3LG4aP4TGEXDO4Y8Dl_bxazUAyDoszMsqhhGxaSHH-76vqkkxi3MKgCkBIOSI_a5uCShvjqDP6DS1tfDAtUqecjxvEFKlyeuMDttQ72vVOJ-OdsuZ7SLQKzZAe4NQ3OLCRNuYEUbSoU_BaJWX3cSjrfKD-E4Oyln6phIHGnTUpGfd6RS46ZSNO_u6YrB8fVvOnbPmyeJ7PlpkugKeMt7psJYh8ypiUolXYSF2UrAKJsig560psSt3ITudSSVWIjqMQOeSiYFxqPiY3x95d8B89xlRvfR-Gb2OdM5FXfAq8HKjbI6WDjzFgV--CeVdhXzOoD3vXp735L7Mzdbo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2162837035</pqid></control><display><type>article</type><title>Ultrathin nickel boride nanosheets anchored on functionalized carbon nanotubes as bifunctional electrocatalysts for overall water splitting</title><source>Royal Society Of Chemistry Journals</source><creator>Chen, Xuncai ; Yu, Zixun ; Wei, Li ; Zhou, Zheng ; Zhai, Shengli ; Chen, Junsheng ; Wang, Yanqing ; Huang, Qianwei ; Karahan, H. Enis ; Liao, Xiaozhou ; Chen, Yuan</creator><creatorcontrib>Chen, Xuncai ; Yu, Zixun ; Wei, Li ; Zhou, Zheng ; Zhai, Shengli ; Chen, Junsheng ; Wang, Yanqing ; Huang, Qianwei ; Karahan, H. Enis ; Liao, Xiaozhou ; Chen, Yuan</creatorcontrib><description>Transition metal boride (TMB) materials have recently gained vast interest as a new class of catalysts. However, their catalytic performance is still limited due to poor electrical conductivity and limited specific surface area. Here, we demonstrate a generalizable approach to overcome these limitations by anchoring ultrathin nickel boride (Ni
x
B) sheets on the surfaces of functionalized small-diameter multi-walled carbon nanotubes (f-MWCNTs). The electrochemically active surface area and charge transfer resistance of the resulting hybrid materials (Ni
x
B/f-MWCNT) is 3.4 and 0.24 times that of the Ni
x
B nanosheets, respectively. And, Ni
x
B/f-MWCNT exhibited superior catalytic activities and stability toward both oxygen evolution and hydrogen evolution reactions. For the overall water splitting, it requires a cell voltage of 1.60 V to reach the current density of 10 mA cm
−2
, outperforming existing metal boride catalysts as well as commercial IrO
2
/Pt/C catalysts. Further, X-ray photoelectron spectroscopy revealed the strong chemical coupling between Ni
x
B and f-MWCNTs and the
in situ
formation of highly active NiOOH/Ni
x
B and Ni(OH)
2
/Ni
x
B heterojunctions, which contributes to the superior activity. The developed design concept can serve as a general approach to improve other electrocatalysts with low electrical conductivity and specific surface area, such as metal oxides, metal hydroxides, and metal–organic framework-derived materials.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/C8TA09130G</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anchoring ; Catalysis ; Catalysts ; Charge transfer ; Chemical evolution ; Electrical conductivity ; Electrical resistivity ; Electrocatalysts ; Heterojunctions ; Hydrogen evolution reactions ; Hydroxides ; Metal-organic frameworks ; Metals ; Multi wall carbon nanotubes ; Nanosheets ; Nanotechnology ; Nanotubes ; Nickel ; Organic chemistry ; Oxides ; Photoelectron spectroscopy ; Photoelectrons ; Specific surface ; Splitting ; Surface area ; Surface charge ; Transition metals ; Water splitting</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (2), p.764-774</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-3dc5d9062711996daeb9c451809e94531f5eb5cb9fc29a9a46f3e6620264139c3</citedby><cites>FETCH-LOGICAL-c403t-3dc5d9062711996daeb9c451809e94531f5eb5cb9fc29a9a46f3e6620264139c3</cites><orcidid>0000-0001-8771-2921 ; 0000-0002-1473-1344 ; 0000-0001-8565-1758 ; 0000-0001-9059-3839 ; 0000-0003-0126-1109 ; 0000-0002-7753-1024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, Xuncai</creatorcontrib><creatorcontrib>Yu, Zixun</creatorcontrib><creatorcontrib>Wei, Li</creatorcontrib><creatorcontrib>Zhou, Zheng</creatorcontrib><creatorcontrib>Zhai, Shengli</creatorcontrib><creatorcontrib>Chen, Junsheng</creatorcontrib><creatorcontrib>Wang, Yanqing</creatorcontrib><creatorcontrib>Huang, Qianwei</creatorcontrib><creatorcontrib>Karahan, H. Enis</creatorcontrib><creatorcontrib>Liao, Xiaozhou</creatorcontrib><creatorcontrib>Chen, Yuan</creatorcontrib><title>Ultrathin nickel boride nanosheets anchored on functionalized carbon nanotubes as bifunctional electrocatalysts for overall water splitting</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Transition metal boride (TMB) materials have recently gained vast interest as a new class of catalysts. However, their catalytic performance is still limited due to poor electrical conductivity and limited specific surface area. Here, we demonstrate a generalizable approach to overcome these limitations by anchoring ultrathin nickel boride (Ni
x
B) sheets on the surfaces of functionalized small-diameter multi-walled carbon nanotubes (f-MWCNTs). The electrochemically active surface area and charge transfer resistance of the resulting hybrid materials (Ni
x
B/f-MWCNT) is 3.4 and 0.24 times that of the Ni
x
B nanosheets, respectively. And, Ni
x
B/f-MWCNT exhibited superior catalytic activities and stability toward both oxygen evolution and hydrogen evolution reactions. For the overall water splitting, it requires a cell voltage of 1.60 V to reach the current density of 10 mA cm
−2
, outperforming existing metal boride catalysts as well as commercial IrO
2
/Pt/C catalysts. Further, X-ray photoelectron spectroscopy revealed the strong chemical coupling between Ni
x
B and f-MWCNTs and the
in situ
formation of highly active NiOOH/Ni
x
B and Ni(OH)
2
/Ni
x
B heterojunctions, which contributes to the superior activity. The developed design concept can serve as a general approach to improve other electrocatalysts with low electrical conductivity and specific surface area, such as metal oxides, metal hydroxides, and metal–organic framework-derived materials.</description><subject>Anchoring</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Charge transfer</subject><subject>Chemical evolution</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Electrocatalysts</subject><subject>Heterojunctions</subject><subject>Hydrogen evolution reactions</subject><subject>Hydroxides</subject><subject>Metal-organic frameworks</subject><subject>Metals</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanosheets</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Nickel</subject><subject>Organic chemistry</subject><subject>Oxides</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Specific surface</subject><subject>Splitting</subject><subject>Surface area</subject><subject>Surface charge</subject><subject>Transition metals</subject><subject>Water splitting</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFkEFLAzEUhIMoWGov_oKAN2H1ZbObbo6laBUKXtrzks2-takxqUlWqX_BP-2Wip3LG4aP4TGEXDO4Y8Dl_bxazUAyDoszMsqhhGxaSHH-76vqkkxi3MKgCkBIOSI_a5uCShvjqDP6DS1tfDAtUqecjxvEFKlyeuMDttQ72vVOJ-OdsuZ7SLQKzZAe4NQ3OLCRNuYEUbSoU_BaJWX3cSjrfKD-E4Oyln6phIHGnTUpGfd6RS46ZSNO_u6YrB8fVvOnbPmyeJ7PlpkugKeMt7psJYh8ypiUolXYSF2UrAKJsig560psSt3ITudSSVWIjqMQOeSiYFxqPiY3x95d8B89xlRvfR-Gb2OdM5FXfAq8HKjbI6WDjzFgV--CeVdhXzOoD3vXp735L7Mzdbo</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Chen, Xuncai</creator><creator>Yu, Zixun</creator><creator>Wei, Li</creator><creator>Zhou, Zheng</creator><creator>Zhai, Shengli</creator><creator>Chen, Junsheng</creator><creator>Wang, Yanqing</creator><creator>Huang, Qianwei</creator><creator>Karahan, H. Enis</creator><creator>Liao, Xiaozhou</creator><creator>Chen, Yuan</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-8771-2921</orcidid><orcidid>https://orcid.org/0000-0002-1473-1344</orcidid><orcidid>https://orcid.org/0000-0001-8565-1758</orcidid><orcidid>https://orcid.org/0000-0001-9059-3839</orcidid><orcidid>https://orcid.org/0000-0003-0126-1109</orcidid><orcidid>https://orcid.org/0000-0002-7753-1024</orcidid></search><sort><creationdate>2019</creationdate><title>Ultrathin nickel boride nanosheets anchored on functionalized carbon nanotubes as bifunctional electrocatalysts for overall water splitting</title><author>Chen, Xuncai ; Yu, Zixun ; Wei, Li ; Zhou, Zheng ; Zhai, Shengli ; Chen, Junsheng ; Wang, Yanqing ; Huang, Qianwei ; Karahan, H. Enis ; Liao, Xiaozhou ; Chen, Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-3dc5d9062711996daeb9c451809e94531f5eb5cb9fc29a9a46f3e6620264139c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anchoring</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Charge transfer</topic><topic>Chemical evolution</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Electrocatalysts</topic><topic>Heterojunctions</topic><topic>Hydrogen evolution reactions</topic><topic>Hydroxides</topic><topic>Metal-organic frameworks</topic><topic>Metals</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanosheets</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Nickel</topic><topic>Organic chemistry</topic><topic>Oxides</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Specific surface</topic><topic>Splitting</topic><topic>Surface area</topic><topic>Surface charge</topic><topic>Transition metals</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xuncai</creatorcontrib><creatorcontrib>Yu, Zixun</creatorcontrib><creatorcontrib>Wei, Li</creatorcontrib><creatorcontrib>Zhou, Zheng</creatorcontrib><creatorcontrib>Zhai, Shengli</creatorcontrib><creatorcontrib>Chen, Junsheng</creatorcontrib><creatorcontrib>Wang, Yanqing</creatorcontrib><creatorcontrib>Huang, Qianwei</creatorcontrib><creatorcontrib>Karahan, H. Enis</creatorcontrib><creatorcontrib>Liao, Xiaozhou</creatorcontrib><creatorcontrib>Chen, Yuan</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xuncai</au><au>Yu, Zixun</au><au>Wei, Li</au><au>Zhou, Zheng</au><au>Zhai, Shengli</au><au>Chen, Junsheng</au><au>Wang, Yanqing</au><au>Huang, Qianwei</au><au>Karahan, H. Enis</au><au>Liao, Xiaozhou</au><au>Chen, Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrathin nickel boride nanosheets anchored on functionalized carbon nanotubes as bifunctional electrocatalysts for overall water splitting</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2019</date><risdate>2019</risdate><volume>7</volume><issue>2</issue><spage>764</spage><epage>774</epage><pages>764-774</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Transition metal boride (TMB) materials have recently gained vast interest as a new class of catalysts. However, their catalytic performance is still limited due to poor electrical conductivity and limited specific surface area. Here, we demonstrate a generalizable approach to overcome these limitations by anchoring ultrathin nickel boride (Ni
x
B) sheets on the surfaces of functionalized small-diameter multi-walled carbon nanotubes (f-MWCNTs). The electrochemically active surface area and charge transfer resistance of the resulting hybrid materials (Ni
x
B/f-MWCNT) is 3.4 and 0.24 times that of the Ni
x
B nanosheets, respectively. And, Ni
x
B/f-MWCNT exhibited superior catalytic activities and stability toward both oxygen evolution and hydrogen evolution reactions. For the overall water splitting, it requires a cell voltage of 1.60 V to reach the current density of 10 mA cm
−2
, outperforming existing metal boride catalysts as well as commercial IrO
2
/Pt/C catalysts. Further, X-ray photoelectron spectroscopy revealed the strong chemical coupling between Ni
x
B and f-MWCNTs and the
in situ
formation of highly active NiOOH/Ni
x
B and Ni(OH)
2
/Ni
x
B heterojunctions, which contributes to the superior activity. The developed design concept can serve as a general approach to improve other electrocatalysts with low electrical conductivity and specific surface area, such as metal oxides, metal hydroxides, and metal–organic framework-derived materials.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C8TA09130G</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8771-2921</orcidid><orcidid>https://orcid.org/0000-0002-1473-1344</orcidid><orcidid>https://orcid.org/0000-0001-8565-1758</orcidid><orcidid>https://orcid.org/0000-0001-9059-3839</orcidid><orcidid>https://orcid.org/0000-0003-0126-1109</orcidid><orcidid>https://orcid.org/0000-0002-7753-1024</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (2), p.764-774 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2162837035 |
source | Royal Society Of Chemistry Journals |
subjects | Anchoring Catalysis Catalysts Charge transfer Chemical evolution Electrical conductivity Electrical resistivity Electrocatalysts Heterojunctions Hydrogen evolution reactions Hydroxides Metal-organic frameworks Metals Multi wall carbon nanotubes Nanosheets Nanotechnology Nanotubes Nickel Organic chemistry Oxides Photoelectron spectroscopy Photoelectrons Specific surface Splitting Surface area Surface charge Transition metals Water splitting |
title | Ultrathin nickel boride nanosheets anchored on functionalized carbon nanotubes as bifunctional electrocatalysts for overall water splitting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A06%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrathin%20nickel%20boride%20nanosheets%20anchored%20on%20functionalized%20carbon%20nanotubes%20as%20bifunctional%20electrocatalysts%20for%20overall%20water%20splitting&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Chen,%20Xuncai&rft.date=2019&rft.volume=7&rft.issue=2&rft.spage=764&rft.epage=774&rft.pages=764-774&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/C8TA09130G&rft_dat=%3Cproquest_cross%3E2162837035%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2162837035&rft_id=info:pmid/&rfr_iscdi=true |