Ultrathin nickel boride nanosheets anchored on functionalized carbon nanotubes as bifunctional electrocatalysts for overall water splitting

Transition metal boride (TMB) materials have recently gained vast interest as a new class of catalysts. However, their catalytic performance is still limited due to poor electrical conductivity and limited specific surface area. Here, we demonstrate a generalizable approach to overcome these limitat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2019, Vol.7 (2), p.764-774
Hauptverfasser: Chen, Xuncai, Yu, Zixun, Wei, Li, Zhou, Zheng, Zhai, Shengli, Chen, Junsheng, Wang, Yanqing, Huang, Qianwei, Karahan, H. Enis, Liao, Xiaozhou, Chen, Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 774
container_issue 2
container_start_page 764
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 7
creator Chen, Xuncai
Yu, Zixun
Wei, Li
Zhou, Zheng
Zhai, Shengli
Chen, Junsheng
Wang, Yanqing
Huang, Qianwei
Karahan, H. Enis
Liao, Xiaozhou
Chen, Yuan
description Transition metal boride (TMB) materials have recently gained vast interest as a new class of catalysts. However, their catalytic performance is still limited due to poor electrical conductivity and limited specific surface area. Here, we demonstrate a generalizable approach to overcome these limitations by anchoring ultrathin nickel boride (Ni x B) sheets on the surfaces of functionalized small-diameter multi-walled carbon nanotubes (f-MWCNTs). The electrochemically active surface area and charge transfer resistance of the resulting hybrid materials (Ni x B/f-MWCNT) is 3.4 and 0.24 times that of the Ni x B nanosheets, respectively. And, Ni x B/f-MWCNT exhibited superior catalytic activities and stability toward both oxygen evolution and hydrogen evolution reactions. For the overall water splitting, it requires a cell voltage of 1.60 V to reach the current density of 10 mA cm −2 , outperforming existing metal boride catalysts as well as commercial IrO 2 /Pt/C catalysts. Further, X-ray photoelectron spectroscopy revealed the strong chemical coupling between Ni x B and f-MWCNTs and the in situ formation of highly active NiOOH/Ni x B and Ni(OH) 2 /Ni x B heterojunctions, which contributes to the superior activity. The developed design concept can serve as a general approach to improve other electrocatalysts with low electrical conductivity and specific surface area, such as metal oxides, metal hydroxides, and metal–organic framework-derived materials.
doi_str_mv 10.1039/C8TA09130G
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2162837035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2162837035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-3dc5d9062711996daeb9c451809e94531f5eb5cb9fc29a9a46f3e6620264139c3</originalsourceid><addsrcrecordid>eNpFkEFLAzEUhIMoWGov_oKAN2H1ZbObbo6laBUKXtrzks2-takxqUlWqX_BP-2Wip3LG4aP4TGEXDO4Y8Dl_bxazUAyDoszMsqhhGxaSHH-76vqkkxi3MKgCkBIOSI_a5uCShvjqDP6DS1tfDAtUqecjxvEFKlyeuMDttQ72vVOJ-OdsuZ7SLQKzZAe4NQ3OLCRNuYEUbSoU_BaJWX3cSjrfKD-E4Oyln6phIHGnTUpGfd6RS46ZSNO_u6YrB8fVvOnbPmyeJ7PlpkugKeMt7psJYh8ypiUolXYSF2UrAKJsig560psSt3ITudSSVWIjqMQOeSiYFxqPiY3x95d8B89xlRvfR-Gb2OdM5FXfAq8HKjbI6WDjzFgV--CeVdhXzOoD3vXp735L7Mzdbo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2162837035</pqid></control><display><type>article</type><title>Ultrathin nickel boride nanosheets anchored on functionalized carbon nanotubes as bifunctional electrocatalysts for overall water splitting</title><source>Royal Society Of Chemistry Journals</source><creator>Chen, Xuncai ; Yu, Zixun ; Wei, Li ; Zhou, Zheng ; Zhai, Shengli ; Chen, Junsheng ; Wang, Yanqing ; Huang, Qianwei ; Karahan, H. Enis ; Liao, Xiaozhou ; Chen, Yuan</creator><creatorcontrib>Chen, Xuncai ; Yu, Zixun ; Wei, Li ; Zhou, Zheng ; Zhai, Shengli ; Chen, Junsheng ; Wang, Yanqing ; Huang, Qianwei ; Karahan, H. Enis ; Liao, Xiaozhou ; Chen, Yuan</creatorcontrib><description>Transition metal boride (TMB) materials have recently gained vast interest as a new class of catalysts. However, their catalytic performance is still limited due to poor electrical conductivity and limited specific surface area. Here, we demonstrate a generalizable approach to overcome these limitations by anchoring ultrathin nickel boride (Ni x B) sheets on the surfaces of functionalized small-diameter multi-walled carbon nanotubes (f-MWCNTs). The electrochemically active surface area and charge transfer resistance of the resulting hybrid materials (Ni x B/f-MWCNT) is 3.4 and 0.24 times that of the Ni x B nanosheets, respectively. And, Ni x B/f-MWCNT exhibited superior catalytic activities and stability toward both oxygen evolution and hydrogen evolution reactions. For the overall water splitting, it requires a cell voltage of 1.60 V to reach the current density of 10 mA cm −2 , outperforming existing metal boride catalysts as well as commercial IrO 2 /Pt/C catalysts. Further, X-ray photoelectron spectroscopy revealed the strong chemical coupling between Ni x B and f-MWCNTs and the in situ formation of highly active NiOOH/Ni x B and Ni(OH) 2 /Ni x B heterojunctions, which contributes to the superior activity. The developed design concept can serve as a general approach to improve other electrocatalysts with low electrical conductivity and specific surface area, such as metal oxides, metal hydroxides, and metal–organic framework-derived materials.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/C8TA09130G</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anchoring ; Catalysis ; Catalysts ; Charge transfer ; Chemical evolution ; Electrical conductivity ; Electrical resistivity ; Electrocatalysts ; Heterojunctions ; Hydrogen evolution reactions ; Hydroxides ; Metal-organic frameworks ; Metals ; Multi wall carbon nanotubes ; Nanosheets ; Nanotechnology ; Nanotubes ; Nickel ; Organic chemistry ; Oxides ; Photoelectron spectroscopy ; Photoelectrons ; Specific surface ; Splitting ; Surface area ; Surface charge ; Transition metals ; Water splitting</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (2), p.764-774</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-3dc5d9062711996daeb9c451809e94531f5eb5cb9fc29a9a46f3e6620264139c3</citedby><cites>FETCH-LOGICAL-c403t-3dc5d9062711996daeb9c451809e94531f5eb5cb9fc29a9a46f3e6620264139c3</cites><orcidid>0000-0001-8771-2921 ; 0000-0002-1473-1344 ; 0000-0001-8565-1758 ; 0000-0001-9059-3839 ; 0000-0003-0126-1109 ; 0000-0002-7753-1024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, Xuncai</creatorcontrib><creatorcontrib>Yu, Zixun</creatorcontrib><creatorcontrib>Wei, Li</creatorcontrib><creatorcontrib>Zhou, Zheng</creatorcontrib><creatorcontrib>Zhai, Shengli</creatorcontrib><creatorcontrib>Chen, Junsheng</creatorcontrib><creatorcontrib>Wang, Yanqing</creatorcontrib><creatorcontrib>Huang, Qianwei</creatorcontrib><creatorcontrib>Karahan, H. Enis</creatorcontrib><creatorcontrib>Liao, Xiaozhou</creatorcontrib><creatorcontrib>Chen, Yuan</creatorcontrib><title>Ultrathin nickel boride nanosheets anchored on functionalized carbon nanotubes as bifunctional electrocatalysts for overall water splitting</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Transition metal boride (TMB) materials have recently gained vast interest as a new class of catalysts. However, their catalytic performance is still limited due to poor electrical conductivity and limited specific surface area. Here, we demonstrate a generalizable approach to overcome these limitations by anchoring ultrathin nickel boride (Ni x B) sheets on the surfaces of functionalized small-diameter multi-walled carbon nanotubes (f-MWCNTs). The electrochemically active surface area and charge transfer resistance of the resulting hybrid materials (Ni x B/f-MWCNT) is 3.4 and 0.24 times that of the Ni x B nanosheets, respectively. And, Ni x B/f-MWCNT exhibited superior catalytic activities and stability toward both oxygen evolution and hydrogen evolution reactions. For the overall water splitting, it requires a cell voltage of 1.60 V to reach the current density of 10 mA cm −2 , outperforming existing metal boride catalysts as well as commercial IrO 2 /Pt/C catalysts. Further, X-ray photoelectron spectroscopy revealed the strong chemical coupling between Ni x B and f-MWCNTs and the in situ formation of highly active NiOOH/Ni x B and Ni(OH) 2 /Ni x B heterojunctions, which contributes to the superior activity. The developed design concept can serve as a general approach to improve other electrocatalysts with low electrical conductivity and specific surface area, such as metal oxides, metal hydroxides, and metal–organic framework-derived materials.</description><subject>Anchoring</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Charge transfer</subject><subject>Chemical evolution</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Electrocatalysts</subject><subject>Heterojunctions</subject><subject>Hydrogen evolution reactions</subject><subject>Hydroxides</subject><subject>Metal-organic frameworks</subject><subject>Metals</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanosheets</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Nickel</subject><subject>Organic chemistry</subject><subject>Oxides</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Specific surface</subject><subject>Splitting</subject><subject>Surface area</subject><subject>Surface charge</subject><subject>Transition metals</subject><subject>Water splitting</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFkEFLAzEUhIMoWGov_oKAN2H1ZbObbo6laBUKXtrzks2-takxqUlWqX_BP-2Wip3LG4aP4TGEXDO4Y8Dl_bxazUAyDoszMsqhhGxaSHH-76vqkkxi3MKgCkBIOSI_a5uCShvjqDP6DS1tfDAtUqecjxvEFKlyeuMDttQ72vVOJ-OdsuZ7SLQKzZAe4NQ3OLCRNuYEUbSoU_BaJWX3cSjrfKD-E4Oyln6phIHGnTUpGfd6RS46ZSNO_u6YrB8fVvOnbPmyeJ7PlpkugKeMt7psJYh8ypiUolXYSF2UrAKJsig560psSt3ITudSSVWIjqMQOeSiYFxqPiY3x95d8B89xlRvfR-Gb2OdM5FXfAq8HKjbI6WDjzFgV--CeVdhXzOoD3vXp735L7Mzdbo</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Chen, Xuncai</creator><creator>Yu, Zixun</creator><creator>Wei, Li</creator><creator>Zhou, Zheng</creator><creator>Zhai, Shengli</creator><creator>Chen, Junsheng</creator><creator>Wang, Yanqing</creator><creator>Huang, Qianwei</creator><creator>Karahan, H. Enis</creator><creator>Liao, Xiaozhou</creator><creator>Chen, Yuan</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-8771-2921</orcidid><orcidid>https://orcid.org/0000-0002-1473-1344</orcidid><orcidid>https://orcid.org/0000-0001-8565-1758</orcidid><orcidid>https://orcid.org/0000-0001-9059-3839</orcidid><orcidid>https://orcid.org/0000-0003-0126-1109</orcidid><orcidid>https://orcid.org/0000-0002-7753-1024</orcidid></search><sort><creationdate>2019</creationdate><title>Ultrathin nickel boride nanosheets anchored on functionalized carbon nanotubes as bifunctional electrocatalysts for overall water splitting</title><author>Chen, Xuncai ; Yu, Zixun ; Wei, Li ; Zhou, Zheng ; Zhai, Shengli ; Chen, Junsheng ; Wang, Yanqing ; Huang, Qianwei ; Karahan, H. Enis ; Liao, Xiaozhou ; Chen, Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-3dc5d9062711996daeb9c451809e94531f5eb5cb9fc29a9a46f3e6620264139c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anchoring</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Charge transfer</topic><topic>Chemical evolution</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Electrocatalysts</topic><topic>Heterojunctions</topic><topic>Hydrogen evolution reactions</topic><topic>Hydroxides</topic><topic>Metal-organic frameworks</topic><topic>Metals</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanosheets</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Nickel</topic><topic>Organic chemistry</topic><topic>Oxides</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Specific surface</topic><topic>Splitting</topic><topic>Surface area</topic><topic>Surface charge</topic><topic>Transition metals</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xuncai</creatorcontrib><creatorcontrib>Yu, Zixun</creatorcontrib><creatorcontrib>Wei, Li</creatorcontrib><creatorcontrib>Zhou, Zheng</creatorcontrib><creatorcontrib>Zhai, Shengli</creatorcontrib><creatorcontrib>Chen, Junsheng</creatorcontrib><creatorcontrib>Wang, Yanqing</creatorcontrib><creatorcontrib>Huang, Qianwei</creatorcontrib><creatorcontrib>Karahan, H. Enis</creatorcontrib><creatorcontrib>Liao, Xiaozhou</creatorcontrib><creatorcontrib>Chen, Yuan</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xuncai</au><au>Yu, Zixun</au><au>Wei, Li</au><au>Zhou, Zheng</au><au>Zhai, Shengli</au><au>Chen, Junsheng</au><au>Wang, Yanqing</au><au>Huang, Qianwei</au><au>Karahan, H. Enis</au><au>Liao, Xiaozhou</au><au>Chen, Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrathin nickel boride nanosheets anchored on functionalized carbon nanotubes as bifunctional electrocatalysts for overall water splitting</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2019</date><risdate>2019</risdate><volume>7</volume><issue>2</issue><spage>764</spage><epage>774</epage><pages>764-774</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Transition metal boride (TMB) materials have recently gained vast interest as a new class of catalysts. However, their catalytic performance is still limited due to poor electrical conductivity and limited specific surface area. Here, we demonstrate a generalizable approach to overcome these limitations by anchoring ultrathin nickel boride (Ni x B) sheets on the surfaces of functionalized small-diameter multi-walled carbon nanotubes (f-MWCNTs). The electrochemically active surface area and charge transfer resistance of the resulting hybrid materials (Ni x B/f-MWCNT) is 3.4 and 0.24 times that of the Ni x B nanosheets, respectively. And, Ni x B/f-MWCNT exhibited superior catalytic activities and stability toward both oxygen evolution and hydrogen evolution reactions. For the overall water splitting, it requires a cell voltage of 1.60 V to reach the current density of 10 mA cm −2 , outperforming existing metal boride catalysts as well as commercial IrO 2 /Pt/C catalysts. Further, X-ray photoelectron spectroscopy revealed the strong chemical coupling between Ni x B and f-MWCNTs and the in situ formation of highly active NiOOH/Ni x B and Ni(OH) 2 /Ni x B heterojunctions, which contributes to the superior activity. The developed design concept can serve as a general approach to improve other electrocatalysts with low electrical conductivity and specific surface area, such as metal oxides, metal hydroxides, and metal–organic framework-derived materials.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C8TA09130G</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8771-2921</orcidid><orcidid>https://orcid.org/0000-0002-1473-1344</orcidid><orcidid>https://orcid.org/0000-0001-8565-1758</orcidid><orcidid>https://orcid.org/0000-0001-9059-3839</orcidid><orcidid>https://orcid.org/0000-0003-0126-1109</orcidid><orcidid>https://orcid.org/0000-0002-7753-1024</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (2), p.764-774
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2162837035
source Royal Society Of Chemistry Journals
subjects Anchoring
Catalysis
Catalysts
Charge transfer
Chemical evolution
Electrical conductivity
Electrical resistivity
Electrocatalysts
Heterojunctions
Hydrogen evolution reactions
Hydroxides
Metal-organic frameworks
Metals
Multi wall carbon nanotubes
Nanosheets
Nanotechnology
Nanotubes
Nickel
Organic chemistry
Oxides
Photoelectron spectroscopy
Photoelectrons
Specific surface
Splitting
Surface area
Surface charge
Transition metals
Water splitting
title Ultrathin nickel boride nanosheets anchored on functionalized carbon nanotubes as bifunctional electrocatalysts for overall water splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A06%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrathin%20nickel%20boride%20nanosheets%20anchored%20on%20functionalized%20carbon%20nanotubes%20as%20bifunctional%20electrocatalysts%20for%20overall%20water%20splitting&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Chen,%20Xuncai&rft.date=2019&rft.volume=7&rft.issue=2&rft.spage=764&rft.epage=774&rft.pages=764-774&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/C8TA09130G&rft_dat=%3Cproquest_cross%3E2162837035%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2162837035&rft_id=info:pmid/&rfr_iscdi=true