Synergistic Crystal and Interface Engineering for Efficient and Stable Perovskite Photovoltaics
The presence of bulk and surface defects in perovskite light harvesting materials limits the overall efficiency of perovskite solar cells (PSCs). The formation of such defects is suppressed by adding methylammonium chloride (MACl) as a crystallization aid to the precursor solution to realize high‐qu...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2019-01, Vol.9 (1), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 9 |
creator | Tavakoli, Mohammad Mahdi Saliba, Michael Yadav, Pankaj Holzhey, Philippe Hagfeldt, Anders Zakeeruddin, Shaik Mohammed Grätzel, Michael |
description | The presence of bulk and surface defects in perovskite light harvesting materials limits the overall efficiency of perovskite solar cells (PSCs). The formation of such defects is suppressed by adding methylammonium chloride (MACl) as a crystallization aid to the precursor solution to realize high‐quality, large‐grain triple A‐cation perovskite films and that are combined with judicious engineering of the perovskite interface with the electron and hole selective contact materials. A planar SnO2/TiO2 double layer oxide is introduced to ascertain fast electron extraction and the surface of the perovskite facing the hole conductor is treated with iodine dissolved in isopropanol to passivate surface trap states resulting in a retardation of radiationless carrier recombination. A maximum solar to electric power conversion efficiency (PCE) of 21.65% and open circuit photovoltage (Voc) of ≈1.24 V with only ≈370 mV loss in potential with respect to the band gap are achieved, by applying these modifications. Additionally, the defect healing enhances the operational stability of the devices that retain 96%, 90%, and 85% of their initial PCE values after 500 h under continuously light illumination at 20, 50, and 65 °C, respectively, demonstrating one of the most stable planar PSCs reported so far.
The bulk and surface defects of perovskite films are suppressed by using SnO2/TiO2 double layer oxide, addition of methylammonium chloride (MACl) as a crystallization aid to the precursor solution, and surface passivation of perovskite films with iodine solution, due to the formation of high‐quality large‐grain perovskite films and retardation of radiationless carrier recombination. |
doi_str_mv | 10.1002/aenm.201802646 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2162712965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2162712965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4626-392ac7b33cc8f459dab92ab1c05e32b46edf12f29f13f279e53b81a221ed4f553</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhCMEElXplXMkzil-xU2OVRWgUnlIhbPlOOviktrFdovy70kpKkf2sqPVNzvSJMk1RmOMELmVYDdjgnCBCGf8LBlgjlnGC4bOT5qSy2QUwhr1w0qMKB0kYtlZ8CsTolHpzHchyjaVtknnNoLXUkFa2ZWxAN7YVaqdTyutjTJg4w-3jLJuIX0B7_bhw8Revrvo9q6N0qhwlVxo2QYY_e5h8nZXvc4essXz_Xw2XWSKccIzWhKpJjWlShWa5WUj6_5SY4VyoKRmHBqNiSalxlSTSQk5rQssCcHQMJ3ndJjcHP9uvfvcQYhi7Xbe9pGCYE4mmJT8QI2PlPIuBA9abL3ZSN8JjMShR3HoUZx67A3l0fBlWuj-ocW0enr8834DM5R3zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2162712965</pqid></control><display><type>article</type><title>Synergistic Crystal and Interface Engineering for Efficient and Stable Perovskite Photovoltaics</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tavakoli, Mohammad Mahdi ; Saliba, Michael ; Yadav, Pankaj ; Holzhey, Philippe ; Hagfeldt, Anders ; Zakeeruddin, Shaik Mohammed ; Grätzel, Michael</creator><creatorcontrib>Tavakoli, Mohammad Mahdi ; Saliba, Michael ; Yadav, Pankaj ; Holzhey, Philippe ; Hagfeldt, Anders ; Zakeeruddin, Shaik Mohammed ; Grätzel, Michael</creatorcontrib><description>The presence of bulk and surface defects in perovskite light harvesting materials limits the overall efficiency of perovskite solar cells (PSCs). The formation of such defects is suppressed by adding methylammonium chloride (MACl) as a crystallization aid to the precursor solution to realize high‐quality, large‐grain triple A‐cation perovskite films and that are combined with judicious engineering of the perovskite interface with the electron and hole selective contact materials. A planar SnO2/TiO2 double layer oxide is introduced to ascertain fast electron extraction and the surface of the perovskite facing the hole conductor is treated with iodine dissolved in isopropanol to passivate surface trap states resulting in a retardation of radiationless carrier recombination. A maximum solar to electric power conversion efficiency (PCE) of 21.65% and open circuit photovoltage (Voc) of ≈1.24 V with only ≈370 mV loss in potential with respect to the band gap are achieved, by applying these modifications. Additionally, the defect healing enhances the operational stability of the devices that retain 96%, 90%, and 85% of their initial PCE values after 500 h under continuously light illumination at 20, 50, and 65 °C, respectively, demonstrating one of the most stable planar PSCs reported so far.
The bulk and surface defects of perovskite films are suppressed by using SnO2/TiO2 double layer oxide, addition of methylammonium chloride (MACl) as a crystallization aid to the precursor solution, and surface passivation of perovskite films with iodine solution, due to the formation of high‐quality large‐grain perovskite films and retardation of radiationless carrier recombination.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201802646</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carrier recombination ; Conductors ; Crystal defects ; Crystallization ; efficiency ; Electric contacts ; Energy conversion efficiency ; Iodine ; Iodine passivation ; Light ; Materials selection ; perovskite solar cells ; Perovskites ; Photovoltaic cells ; Solar cells ; stability ; Surface defects ; Tin dioxide ; Titanium dioxide</subject><ispartof>Advanced energy materials, 2019-01, Vol.9 (1), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4626-392ac7b33cc8f459dab92ab1c05e32b46edf12f29f13f279e53b81a221ed4f553</citedby><cites>FETCH-LOGICAL-c4626-392ac7b33cc8f459dab92ab1c05e32b46edf12f29f13f279e53b81a221ed4f553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201802646$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201802646$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Tavakoli, Mohammad Mahdi</creatorcontrib><creatorcontrib>Saliba, Michael</creatorcontrib><creatorcontrib>Yadav, Pankaj</creatorcontrib><creatorcontrib>Holzhey, Philippe</creatorcontrib><creatorcontrib>Hagfeldt, Anders</creatorcontrib><creatorcontrib>Zakeeruddin, Shaik Mohammed</creatorcontrib><creatorcontrib>Grätzel, Michael</creatorcontrib><title>Synergistic Crystal and Interface Engineering for Efficient and Stable Perovskite Photovoltaics</title><title>Advanced energy materials</title><description>The presence of bulk and surface defects in perovskite light harvesting materials limits the overall efficiency of perovskite solar cells (PSCs). The formation of such defects is suppressed by adding methylammonium chloride (MACl) as a crystallization aid to the precursor solution to realize high‐quality, large‐grain triple A‐cation perovskite films and that are combined with judicious engineering of the perovskite interface with the electron and hole selective contact materials. A planar SnO2/TiO2 double layer oxide is introduced to ascertain fast electron extraction and the surface of the perovskite facing the hole conductor is treated with iodine dissolved in isopropanol to passivate surface trap states resulting in a retardation of radiationless carrier recombination. A maximum solar to electric power conversion efficiency (PCE) of 21.65% and open circuit photovoltage (Voc) of ≈1.24 V with only ≈370 mV loss in potential with respect to the band gap are achieved, by applying these modifications. Additionally, the defect healing enhances the operational stability of the devices that retain 96%, 90%, and 85% of their initial PCE values after 500 h under continuously light illumination at 20, 50, and 65 °C, respectively, demonstrating one of the most stable planar PSCs reported so far.
The bulk and surface defects of perovskite films are suppressed by using SnO2/TiO2 double layer oxide, addition of methylammonium chloride (MACl) as a crystallization aid to the precursor solution, and surface passivation of perovskite films with iodine solution, due to the formation of high‐quality large‐grain perovskite films and retardation of radiationless carrier recombination.</description><subject>Carrier recombination</subject><subject>Conductors</subject><subject>Crystal defects</subject><subject>Crystallization</subject><subject>efficiency</subject><subject>Electric contacts</subject><subject>Energy conversion efficiency</subject><subject>Iodine</subject><subject>Iodine passivation</subject><subject>Light</subject><subject>Materials selection</subject><subject>perovskite solar cells</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>stability</subject><subject>Surface defects</subject><subject>Tin dioxide</subject><subject>Titanium dioxide</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhCMEElXplXMkzil-xU2OVRWgUnlIhbPlOOviktrFdovy70kpKkf2sqPVNzvSJMk1RmOMELmVYDdjgnCBCGf8LBlgjlnGC4bOT5qSy2QUwhr1w0qMKB0kYtlZ8CsTolHpzHchyjaVtknnNoLXUkFa2ZWxAN7YVaqdTyutjTJg4w-3jLJuIX0B7_bhw8Revrvo9q6N0qhwlVxo2QYY_e5h8nZXvc4essXz_Xw2XWSKccIzWhKpJjWlShWa5WUj6_5SY4VyoKRmHBqNiSalxlSTSQk5rQssCcHQMJ3ndJjcHP9uvfvcQYhi7Xbe9pGCYE4mmJT8QI2PlPIuBA9abL3ZSN8JjMShR3HoUZx67A3l0fBlWuj-ocW0enr8834DM5R3zw</recordid><startdate>20190103</startdate><enddate>20190103</enddate><creator>Tavakoli, Mohammad Mahdi</creator><creator>Saliba, Michael</creator><creator>Yadav, Pankaj</creator><creator>Holzhey, Philippe</creator><creator>Hagfeldt, Anders</creator><creator>Zakeeruddin, Shaik Mohammed</creator><creator>Grätzel, Michael</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20190103</creationdate><title>Synergistic Crystal and Interface Engineering for Efficient and Stable Perovskite Photovoltaics</title><author>Tavakoli, Mohammad Mahdi ; Saliba, Michael ; Yadav, Pankaj ; Holzhey, Philippe ; Hagfeldt, Anders ; Zakeeruddin, Shaik Mohammed ; Grätzel, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4626-392ac7b33cc8f459dab92ab1c05e32b46edf12f29f13f279e53b81a221ed4f553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carrier recombination</topic><topic>Conductors</topic><topic>Crystal defects</topic><topic>Crystallization</topic><topic>efficiency</topic><topic>Electric contacts</topic><topic>Energy conversion efficiency</topic><topic>Iodine</topic><topic>Iodine passivation</topic><topic>Light</topic><topic>Materials selection</topic><topic>perovskite solar cells</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>stability</topic><topic>Surface defects</topic><topic>Tin dioxide</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tavakoli, Mohammad Mahdi</creatorcontrib><creatorcontrib>Saliba, Michael</creatorcontrib><creatorcontrib>Yadav, Pankaj</creatorcontrib><creatorcontrib>Holzhey, Philippe</creatorcontrib><creatorcontrib>Hagfeldt, Anders</creatorcontrib><creatorcontrib>Zakeeruddin, Shaik Mohammed</creatorcontrib><creatorcontrib>Grätzel, Michael</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tavakoli, Mohammad Mahdi</au><au>Saliba, Michael</au><au>Yadav, Pankaj</au><au>Holzhey, Philippe</au><au>Hagfeldt, Anders</au><au>Zakeeruddin, Shaik Mohammed</au><au>Grätzel, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistic Crystal and Interface Engineering for Efficient and Stable Perovskite Photovoltaics</atitle><jtitle>Advanced energy materials</jtitle><date>2019-01-03</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>The presence of bulk and surface defects in perovskite light harvesting materials limits the overall efficiency of perovskite solar cells (PSCs). The formation of such defects is suppressed by adding methylammonium chloride (MACl) as a crystallization aid to the precursor solution to realize high‐quality, large‐grain triple A‐cation perovskite films and that are combined with judicious engineering of the perovskite interface with the electron and hole selective contact materials. A planar SnO2/TiO2 double layer oxide is introduced to ascertain fast electron extraction and the surface of the perovskite facing the hole conductor is treated with iodine dissolved in isopropanol to passivate surface trap states resulting in a retardation of radiationless carrier recombination. A maximum solar to electric power conversion efficiency (PCE) of 21.65% and open circuit photovoltage (Voc) of ≈1.24 V with only ≈370 mV loss in potential with respect to the band gap are achieved, by applying these modifications. Additionally, the defect healing enhances the operational stability of the devices that retain 96%, 90%, and 85% of their initial PCE values after 500 h under continuously light illumination at 20, 50, and 65 °C, respectively, demonstrating one of the most stable planar PSCs reported so far.
The bulk and surface defects of perovskite films are suppressed by using SnO2/TiO2 double layer oxide, addition of methylammonium chloride (MACl) as a crystallization aid to the precursor solution, and surface passivation of perovskite films with iodine solution, due to the formation of high‐quality large‐grain perovskite films and retardation of radiationless carrier recombination.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201802646</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2019-01, Vol.9 (1), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_2162712965 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Carrier recombination Conductors Crystal defects Crystallization efficiency Electric contacts Energy conversion efficiency Iodine Iodine passivation Light Materials selection perovskite solar cells Perovskites Photovoltaic cells Solar cells stability Surface defects Tin dioxide Titanium dioxide |
title | Synergistic Crystal and Interface Engineering for Efficient and Stable Perovskite Photovoltaics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A35%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistic%20Crystal%20and%20Interface%20Engineering%20for%20Efficient%20and%20Stable%20Perovskite%20Photovoltaics&rft.jtitle=Advanced%20energy%20materials&rft.au=Tavakoli,%20Mohammad%20Mahdi&rft.date=2019-01-03&rft.volume=9&rft.issue=1&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201802646&rft_dat=%3Cproquest_cross%3E2162712965%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2162712965&rft_id=info:pmid/&rfr_iscdi=true |