Towards Automated Semantic Segmentation in Prenatal Volumetric Ultrasound

Volumetric ultrasound is rapidly emerging as a viable imaging modality for routine prenatal examinations. Biometrics obtained from the volumetric segmentation shed light on the reformation of precise maternal and fetal health monitoring. However, the poor image quality, low contrast, boundary ambigu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2019-01, Vol.38 (1), p.180-193
Hauptverfasser: Yang, Xin, Yu, Lequan, Li, Shengli, Wen, Huaxuan, Luo, Dandan, Bian, Cheng, Qin, Jing, Ni, Dong, Heng, Pheng-Ann
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 193
container_issue 1
container_start_page 180
container_title IEEE transactions on medical imaging
container_volume 38
creator Yang, Xin
Yu, Lequan
Li, Shengli
Wen, Huaxuan
Luo, Dandan
Bian, Cheng
Qin, Jing
Ni, Dong
Heng, Pheng-Ann
description Volumetric ultrasound is rapidly emerging as a viable imaging modality for routine prenatal examinations. Biometrics obtained from the volumetric segmentation shed light on the reformation of precise maternal and fetal health monitoring. However, the poor image quality, low contrast, boundary ambiguity, and complex anatomy shapes conspire toward a great lack of efficient tools for the segmentation. It makes 3-D ultrasound difficult to interpret and hinders the widespread of 3-D ultrasound in obstetrics. In this paper, we are looking at the problem of semantic segmentation in prenatal ultrasound volumes. Our contribution is threefold: 1) we propose the first and fully automatic framework to simultaneously segment multiple anatomical structures with intensive clinical interest, including fetus, gestational sac, and placenta, which remains a rarely studied and arduous challenge; 2) we propose a composite architecture for dense labeling, in which a customized 3-D fully convolutional network explores spatial intensity concurrency for initial labeling, while a multi-directional recurrent neural network (RNN) encodes spatial sequentiality to combat boundary ambiguity for significant refinement; and 3) we introduce a hierarchical deep supervision mechanism to boost the information flow within RNN and fit the latent sequence hierarchy in fine scales, and further improve the segmentation results. Extensively verified on in-house large data sets, our method illustrates a superior segmentation performance, decent agreements with expert measurements and high reproducibilities against scanning variations, and thus is promising in advancing the prenatal ultrasound examinations.
doi_str_mv 10.1109/TMI.2018.2858779
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2162699788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8418398</ieee_id><sourcerecordid>2076232362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-ec52b592a852595f0fa6412ae552bfcfa6c3dd538c3ae8ebb8b620c4203371c83</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoMouq7eBUEKXrx0nSRNmx5F_FhYUXBXvIU0nUqlbTRJEf-9WXb14CWTmTzzEh5CTijMKIXycvkwnzGgcsakkEVR7pAJFUKmTGSvu2QCrJApQM4OyKH37wA0E1DukwMOkEHOxYTMl_ZLu9onV2OwvQ5YJ8_Y6yG0Jl7eehyCDq0dknZInhwOOuguebHd2GNwkVl1wWlvx6E-InuN7jweb-uUrG5vltf36eLxbn59tUgNz4qQohGsEiXTUjBRigYanWeUaRRx3pjYGV7XgkvDNUqsKlnlDEzGgPOCGsmn5GKT--Hs54g-qL71BrtOD2hHrxgUOeOMx2NKzv-h73Z0Q_ydYjRneVkWch0IG8o4673DRn24ttfuW1FQa80qalZrzWqrOa6cbYPHqsf6b-HXawRON0CLiH_PMqOSl5L_AMwGgLs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2162699788</pqid></control><display><type>article</type><title>Towards Automated Semantic Segmentation in Prenatal Volumetric Ultrasound</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Xin ; Yu, Lequan ; Li, Shengli ; Wen, Huaxuan ; Luo, Dandan ; Bian, Cheng ; Qin, Jing ; Ni, Dong ; Heng, Pheng-Ann</creator><creatorcontrib>Yang, Xin ; Yu, Lequan ; Li, Shengli ; Wen, Huaxuan ; Luo, Dandan ; Bian, Cheng ; Qin, Jing ; Ni, Dong ; Heng, Pheng-Ann</creatorcontrib><description>Volumetric ultrasound is rapidly emerging as a viable imaging modality for routine prenatal examinations. Biometrics obtained from the volumetric segmentation shed light on the reformation of precise maternal and fetal health monitoring. However, the poor image quality, low contrast, boundary ambiguity, and complex anatomy shapes conspire toward a great lack of efficient tools for the segmentation. It makes 3-D ultrasound difficult to interpret and hinders the widespread of 3-D ultrasound in obstetrics. In this paper, we are looking at the problem of semantic segmentation in prenatal ultrasound volumes. Our contribution is threefold: 1) we propose the first and fully automatic framework to simultaneously segment multiple anatomical structures with intensive clinical interest, including fetus, gestational sac, and placenta, which remains a rarely studied and arduous challenge; 2) we propose a composite architecture for dense labeling, in which a customized 3-D fully convolutional network explores spatial intensity concurrency for initial labeling, while a multi-directional recurrent neural network (RNN) encodes spatial sequentiality to combat boundary ambiguity for significant refinement; and 3) we introduce a hierarchical deep supervision mechanism to boost the information flow within RNN and fit the latent sequence hierarchy in fine scales, and further improve the segmentation results. Extensively verified on in-house large data sets, our method illustrates a superior segmentation performance, decent agreements with expert measurements and high reproducibilities against scanning variations, and thus is promising in advancing the prenatal ultrasound examinations.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2018.2858779</identifier><identifier>PMID: 30040635</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Ambiguity ; Artificial neural networks ; Automation ; Biometrics ; Concurrency ; Female ; Fetus ; Fetus - diagnostic imaging ; Fetuses ; fully convolutional networks ; Humans ; Image contrast ; Image processing ; Image quality ; Image segmentation ; Imaging, Three-Dimensional - methods ; Information flow ; Labeling ; Labelling ; Neural networks ; Neural Networks, Computer ; Obstetrics ; Placenta ; Pregnancy ; Prenatal examination ; Recurrent neural networks ; Semantic segmentation ; Semantics ; Shape ; Three-dimensional displays ; Ultrasonic imaging ; Ultrasonography, Prenatal - methods ; Ultrasound ; volumetric ultrasound</subject><ispartof>IEEE transactions on medical imaging, 2019-01, Vol.38 (1), p.180-193</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-ec52b592a852595f0fa6412ae552bfcfa6c3dd538c3ae8ebb8b620c4203371c83</citedby><cites>FETCH-LOGICAL-c347t-ec52b592a852595f0fa6412ae552bfcfa6c3dd538c3ae8ebb8b620c4203371c83</cites><orcidid>0000-0003-3055-5034 ; 0000-0003-4653-6524 ; 0000-0002-9315-6527 ; 0000-0002-2961-0860</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8418398$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8418398$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30040635$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Xin</creatorcontrib><creatorcontrib>Yu, Lequan</creatorcontrib><creatorcontrib>Li, Shengli</creatorcontrib><creatorcontrib>Wen, Huaxuan</creatorcontrib><creatorcontrib>Luo, Dandan</creatorcontrib><creatorcontrib>Bian, Cheng</creatorcontrib><creatorcontrib>Qin, Jing</creatorcontrib><creatorcontrib>Ni, Dong</creatorcontrib><creatorcontrib>Heng, Pheng-Ann</creatorcontrib><title>Towards Automated Semantic Segmentation in Prenatal Volumetric Ultrasound</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Volumetric ultrasound is rapidly emerging as a viable imaging modality for routine prenatal examinations. Biometrics obtained from the volumetric segmentation shed light on the reformation of precise maternal and fetal health monitoring. However, the poor image quality, low contrast, boundary ambiguity, and complex anatomy shapes conspire toward a great lack of efficient tools for the segmentation. It makes 3-D ultrasound difficult to interpret and hinders the widespread of 3-D ultrasound in obstetrics. In this paper, we are looking at the problem of semantic segmentation in prenatal ultrasound volumes. Our contribution is threefold: 1) we propose the first and fully automatic framework to simultaneously segment multiple anatomical structures with intensive clinical interest, including fetus, gestational sac, and placenta, which remains a rarely studied and arduous challenge; 2) we propose a composite architecture for dense labeling, in which a customized 3-D fully convolutional network explores spatial intensity concurrency for initial labeling, while a multi-directional recurrent neural network (RNN) encodes spatial sequentiality to combat boundary ambiguity for significant refinement; and 3) we introduce a hierarchical deep supervision mechanism to boost the information flow within RNN and fit the latent sequence hierarchy in fine scales, and further improve the segmentation results. Extensively verified on in-house large data sets, our method illustrates a superior segmentation performance, decent agreements with expert measurements and high reproducibilities against scanning variations, and thus is promising in advancing the prenatal ultrasound examinations.</description><subject>Algorithms</subject><subject>Ambiguity</subject><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Biometrics</subject><subject>Concurrency</subject><subject>Female</subject><subject>Fetus</subject><subject>Fetus - diagnostic imaging</subject><subject>Fetuses</subject><subject>fully convolutional networks</subject><subject>Humans</subject><subject>Image contrast</subject><subject>Image processing</subject><subject>Image quality</subject><subject>Image segmentation</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Information flow</subject><subject>Labeling</subject><subject>Labelling</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Obstetrics</subject><subject>Placenta</subject><subject>Pregnancy</subject><subject>Prenatal examination</subject><subject>Recurrent neural networks</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Shape</subject><subject>Three-dimensional displays</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography, Prenatal - methods</subject><subject>Ultrasound</subject><subject>volumetric ultrasound</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkE1LxDAQhoMouq7eBUEKXrx0nSRNmx5F_FhYUXBXvIU0nUqlbTRJEf-9WXb14CWTmTzzEh5CTijMKIXycvkwnzGgcsakkEVR7pAJFUKmTGSvu2QCrJApQM4OyKH37wA0E1DukwMOkEHOxYTMl_ZLu9onV2OwvQ5YJ8_Y6yG0Jl7eehyCDq0dknZInhwOOuguebHd2GNwkVl1wWlvx6E-InuN7jweb-uUrG5vltf36eLxbn59tUgNz4qQohGsEiXTUjBRigYanWeUaRRx3pjYGV7XgkvDNUqsKlnlDEzGgPOCGsmn5GKT--Hs54g-qL71BrtOD2hHrxgUOeOMx2NKzv-h73Z0Q_ydYjRneVkWch0IG8o4673DRn24ttfuW1FQa80qalZrzWqrOa6cbYPHqsf6b-HXawRON0CLiH_PMqOSl5L_AMwGgLs</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Yang, Xin</creator><creator>Yu, Lequan</creator><creator>Li, Shengli</creator><creator>Wen, Huaxuan</creator><creator>Luo, Dandan</creator><creator>Bian, Cheng</creator><creator>Qin, Jing</creator><creator>Ni, Dong</creator><creator>Heng, Pheng-Ann</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3055-5034</orcidid><orcidid>https://orcid.org/0000-0003-4653-6524</orcidid><orcidid>https://orcid.org/0000-0002-9315-6527</orcidid><orcidid>https://orcid.org/0000-0002-2961-0860</orcidid></search><sort><creationdate>201901</creationdate><title>Towards Automated Semantic Segmentation in Prenatal Volumetric Ultrasound</title><author>Yang, Xin ; Yu, Lequan ; Li, Shengli ; Wen, Huaxuan ; Luo, Dandan ; Bian, Cheng ; Qin, Jing ; Ni, Dong ; Heng, Pheng-Ann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-ec52b592a852595f0fa6412ae552bfcfa6c3dd538c3ae8ebb8b620c4203371c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Ambiguity</topic><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Biometrics</topic><topic>Concurrency</topic><topic>Female</topic><topic>Fetus</topic><topic>Fetus - diagnostic imaging</topic><topic>Fetuses</topic><topic>fully convolutional networks</topic><topic>Humans</topic><topic>Image contrast</topic><topic>Image processing</topic><topic>Image quality</topic><topic>Image segmentation</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Information flow</topic><topic>Labeling</topic><topic>Labelling</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Obstetrics</topic><topic>Placenta</topic><topic>Pregnancy</topic><topic>Prenatal examination</topic><topic>Recurrent neural networks</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Shape</topic><topic>Three-dimensional displays</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography, Prenatal - methods</topic><topic>Ultrasound</topic><topic>volumetric ultrasound</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang, Xin</creatorcontrib><creatorcontrib>Yu, Lequan</creatorcontrib><creatorcontrib>Li, Shengli</creatorcontrib><creatorcontrib>Wen, Huaxuan</creatorcontrib><creatorcontrib>Luo, Dandan</creatorcontrib><creatorcontrib>Bian, Cheng</creatorcontrib><creatorcontrib>Qin, Jing</creatorcontrib><creatorcontrib>Ni, Dong</creatorcontrib><creatorcontrib>Heng, Pheng-Ann</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Xin</au><au>Yu, Lequan</au><au>Li, Shengli</au><au>Wen, Huaxuan</au><au>Luo, Dandan</au><au>Bian, Cheng</au><au>Qin, Jing</au><au>Ni, Dong</au><au>Heng, Pheng-Ann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards Automated Semantic Segmentation in Prenatal Volumetric Ultrasound</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2019-01</date><risdate>2019</risdate><volume>38</volume><issue>1</issue><spage>180</spage><epage>193</epage><pages>180-193</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Volumetric ultrasound is rapidly emerging as a viable imaging modality for routine prenatal examinations. Biometrics obtained from the volumetric segmentation shed light on the reformation of precise maternal and fetal health monitoring. However, the poor image quality, low contrast, boundary ambiguity, and complex anatomy shapes conspire toward a great lack of efficient tools for the segmentation. It makes 3-D ultrasound difficult to interpret and hinders the widespread of 3-D ultrasound in obstetrics. In this paper, we are looking at the problem of semantic segmentation in prenatal ultrasound volumes. Our contribution is threefold: 1) we propose the first and fully automatic framework to simultaneously segment multiple anatomical structures with intensive clinical interest, including fetus, gestational sac, and placenta, which remains a rarely studied and arduous challenge; 2) we propose a composite architecture for dense labeling, in which a customized 3-D fully convolutional network explores spatial intensity concurrency for initial labeling, while a multi-directional recurrent neural network (RNN) encodes spatial sequentiality to combat boundary ambiguity for significant refinement; and 3) we introduce a hierarchical deep supervision mechanism to boost the information flow within RNN and fit the latent sequence hierarchy in fine scales, and further improve the segmentation results. Extensively verified on in-house large data sets, our method illustrates a superior segmentation performance, decent agreements with expert measurements and high reproducibilities against scanning variations, and thus is promising in advancing the prenatal ultrasound examinations.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30040635</pmid><doi>10.1109/TMI.2018.2858779</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3055-5034</orcidid><orcidid>https://orcid.org/0000-0003-4653-6524</orcidid><orcidid>https://orcid.org/0000-0002-9315-6527</orcidid><orcidid>https://orcid.org/0000-0002-2961-0860</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2019-01, Vol.38 (1), p.180-193
issn 0278-0062
1558-254X
language eng
recordid cdi_proquest_journals_2162699788
source IEEE Electronic Library (IEL)
subjects Algorithms
Ambiguity
Artificial neural networks
Automation
Biometrics
Concurrency
Female
Fetus
Fetus - diagnostic imaging
Fetuses
fully convolutional networks
Humans
Image contrast
Image processing
Image quality
Image segmentation
Imaging, Three-Dimensional - methods
Information flow
Labeling
Labelling
Neural networks
Neural Networks, Computer
Obstetrics
Placenta
Pregnancy
Prenatal examination
Recurrent neural networks
Semantic segmentation
Semantics
Shape
Three-dimensional displays
Ultrasonic imaging
Ultrasonography, Prenatal - methods
Ultrasound
volumetric ultrasound
title Towards Automated Semantic Segmentation in Prenatal Volumetric Ultrasound
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A08%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20Automated%20Semantic%20Segmentation%20in%20Prenatal%20Volumetric%20Ultrasound&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Yang,%20Xin&rft.date=2019-01&rft.volume=38&rft.issue=1&rft.spage=180&rft.epage=193&rft.pages=180-193&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2018.2858779&rft_dat=%3Cproquest_RIE%3E2076232362%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2162699788&rft_id=info:pmid/30040635&rft_ieee_id=8418398&rfr_iscdi=true