Implementation and Analysis of Pattern Propagation Factor Based Radar Model for Path Planning
Various path planning algorithms assume space as free and obstacles, and it is widely used in the robotic field. In examples of flight objects, space cannot be simply divided as free and obstacles because a risk exposure factor in the sky is dramatically changed based on radar sites and earth terrai...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & robotic systems 2019-12, Vol.96 (3-4), p.517-528 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 528 |
---|---|
container_issue | 3-4 |
container_start_page | 517 |
container_title | Journal of intelligent & robotic systems |
container_volume | 96 |
creator | Woo, Sang-Hyo Arman Shin, Jong-Jin Kim, Jingyu |
description | Various path planning algorithms assume space as free and obstacles, and it is widely used in the robotic field. In examples of flight objects, space cannot be simply divided as free and obstacles because a risk exposure factor in the sky is dramatically changed based on radar sites and earth terrain. Previous researchers did not consider the risk exposure or used simple radar model to estimate the risk exposure. In this paper, a radar model based on pattern propagation factor is implemented to estimate the risk exposure. The model can simulate effects of terrain masking, 3D radar cross-section, refraction, and radar multipath, and compared paths with deterministic (Dijkstra’s algorithm), evolutionary (Discrete Genetic Algorithm), and Voronoi path planning methods. |
doi_str_mv | 10.1007/s10846-018-0973-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2162674065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A725003701</galeid><sourcerecordid>A725003701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-2345dcd5de3f473e497bca591be6e11372f503ef619a0d96bb5e33c0c960cb5f3</originalsourceid><addsrcrecordid>eNp1kEFrGzEQhUVoIK6bH5CboOdNRquVZB3d0LSBhJiSHIPQSiNnzVpypc3B_z4yG-ipzGGGx_uGmUfIFYNrBqBuCoNVJxtgqwa04o06Iwsm6gAd6C9kAbplDbRaXpCvpewAQK-EXpDX-_1hxD3GyU5DitRGT9fRjscyFJoC3dhpwhzpJqeD3c6eO-umlOkPW9DTP9bbTB-Tx5GGqlbgjW5GG-MQt9_IebBjwcvPviQvdz-fb383D0-_7m_XD43jQkxNyzvhnRceeegUx06r3lmhWY8SGeOqDQI4Bsm0Ba9l3wvk3IHTElwvAl-S7_PeQ05_37FMZpfec32jmJbJVqoOpKiu69m1tSOaIYY0ZetqedwPLkUMQ9XXqhUAXAGrAJsBl1MpGYM55GFv89EwMKfYzRy7qbGbU-xGVaadmVK9cYv53yn_hz4A-byEwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2162674065</pqid></control><display><type>article</type><title>Implementation and Analysis of Pattern Propagation Factor Based Radar Model for Path Planning</title><source>SpringerLink Journals</source><creator>Woo, Sang-Hyo Arman ; Shin, Jong-Jin ; Kim, Jingyu</creator><creatorcontrib>Woo, Sang-Hyo Arman ; Shin, Jong-Jin ; Kim, Jingyu</creatorcontrib><description>Various path planning algorithms assume space as free and obstacles, and it is widely used in the robotic field. In examples of flight objects, space cannot be simply divided as free and obstacles because a risk exposure factor in the sky is dramatically changed based on radar sites and earth terrain. Previous researchers did not consider the risk exposure or used simple radar model to estimate the risk exposure. In this paper, a radar model based on pattern propagation factor is implemented to estimate the risk exposure. The model can simulate effects of terrain masking, 3D radar cross-section, refraction, and radar multipath, and compared paths with deterministic (Dijkstra’s algorithm), evolutionary (Discrete Genetic Algorithm), and Voronoi path planning methods.</description><identifier>ISSN: 0921-0296</identifier><identifier>EISSN: 1573-0409</identifier><identifier>DOI: 10.1007/s10846-018-0973-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Artificial Intelligence ; Barriers ; Computer simulation ; Control ; Electrical Engineering ; Engineering ; Evolutionary algorithms ; Exposure ; Genetic algorithms ; Masking ; Mechanical Engineering ; Mechatronics ; Path planning ; Pattern analysis ; Product design ; Propagation ; Radar ; Radar cross sections ; Radar systems ; Risk ; Risk exposure ; Robotics ; Terrain</subject><ispartof>Journal of intelligent & robotic systems, 2019-12, Vol.96 (3-4), p.517-528</ispartof><rights>Springer Nature B.V. 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Journal of Intelligent & Robotic Systems is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-2345dcd5de3f473e497bca591be6e11372f503ef619a0d96bb5e33c0c960cb5f3</citedby><cites>FETCH-LOGICAL-c355t-2345dcd5de3f473e497bca591be6e11372f503ef619a0d96bb5e33c0c960cb5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10846-018-0973-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10846-018-0973-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Woo, Sang-Hyo Arman</creatorcontrib><creatorcontrib>Shin, Jong-Jin</creatorcontrib><creatorcontrib>Kim, Jingyu</creatorcontrib><title>Implementation and Analysis of Pattern Propagation Factor Based Radar Model for Path Planning</title><title>Journal of intelligent & robotic systems</title><addtitle>J Intell Robot Syst</addtitle><description>Various path planning algorithms assume space as free and obstacles, and it is widely used in the robotic field. In examples of flight objects, space cannot be simply divided as free and obstacles because a risk exposure factor in the sky is dramatically changed based on radar sites and earth terrain. Previous researchers did not consider the risk exposure or used simple radar model to estimate the risk exposure. In this paper, a radar model based on pattern propagation factor is implemented to estimate the risk exposure. The model can simulate effects of terrain masking, 3D radar cross-section, refraction, and radar multipath, and compared paths with deterministic (Dijkstra’s algorithm), evolutionary (Discrete Genetic Algorithm), and Voronoi path planning methods.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Barriers</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Evolutionary algorithms</subject><subject>Exposure</subject><subject>Genetic algorithms</subject><subject>Masking</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Path planning</subject><subject>Pattern analysis</subject><subject>Product design</subject><subject>Propagation</subject><subject>Radar</subject><subject>Radar cross sections</subject><subject>Radar systems</subject><subject>Risk</subject><subject>Risk exposure</subject><subject>Robotics</subject><subject>Terrain</subject><issn>0921-0296</issn><issn>1573-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEFrGzEQhUVoIK6bH5CboOdNRquVZB3d0LSBhJiSHIPQSiNnzVpypc3B_z4yG-ipzGGGx_uGmUfIFYNrBqBuCoNVJxtgqwa04o06Iwsm6gAd6C9kAbplDbRaXpCvpewAQK-EXpDX-_1hxD3GyU5DitRGT9fRjscyFJoC3dhpwhzpJqeD3c6eO-umlOkPW9DTP9bbTB-Tx5GGqlbgjW5GG-MQt9_IebBjwcvPviQvdz-fb383D0-_7m_XD43jQkxNyzvhnRceeegUx06r3lmhWY8SGeOqDQI4Bsm0Ba9l3wvk3IHTElwvAl-S7_PeQ05_37FMZpfec32jmJbJVqoOpKiu69m1tSOaIYY0ZetqedwPLkUMQ9XXqhUAXAGrAJsBl1MpGYM55GFv89EwMKfYzRy7qbGbU-xGVaadmVK9cYv53yn_hz4A-byEwA</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Woo, Sang-Hyo Arman</creator><creator>Shin, Jong-Jin</creator><creator>Kim, Jingyu</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20191201</creationdate><title>Implementation and Analysis of Pattern Propagation Factor Based Radar Model for Path Planning</title><author>Woo, Sang-Hyo Arman ; Shin, Jong-Jin ; Kim, Jingyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-2345dcd5de3f473e497bca591be6e11372f503ef619a0d96bb5e33c0c960cb5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Barriers</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Evolutionary algorithms</topic><topic>Exposure</topic><topic>Genetic algorithms</topic><topic>Masking</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Path planning</topic><topic>Pattern analysis</topic><topic>Product design</topic><topic>Propagation</topic><topic>Radar</topic><topic>Radar cross sections</topic><topic>Radar systems</topic><topic>Risk</topic><topic>Risk exposure</topic><topic>Robotics</topic><topic>Terrain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woo, Sang-Hyo Arman</creatorcontrib><creatorcontrib>Shin, Jong-Jin</creatorcontrib><creatorcontrib>Kim, Jingyu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent & robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woo, Sang-Hyo Arman</au><au>Shin, Jong-Jin</au><au>Kim, Jingyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation and Analysis of Pattern Propagation Factor Based Radar Model for Path Planning</atitle><jtitle>Journal of intelligent & robotic systems</jtitle><stitle>J Intell Robot Syst</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>96</volume><issue>3-4</issue><spage>517</spage><epage>528</epage><pages>517-528</pages><issn>0921-0296</issn><eissn>1573-0409</eissn><abstract>Various path planning algorithms assume space as free and obstacles, and it is widely used in the robotic field. In examples of flight objects, space cannot be simply divided as free and obstacles because a risk exposure factor in the sky is dramatically changed based on radar sites and earth terrain. Previous researchers did not consider the risk exposure or used simple radar model to estimate the risk exposure. In this paper, a radar model based on pattern propagation factor is implemented to estimate the risk exposure. The model can simulate effects of terrain masking, 3D radar cross-section, refraction, and radar multipath, and compared paths with deterministic (Dijkstra’s algorithm), evolutionary (Discrete Genetic Algorithm), and Voronoi path planning methods.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10846-018-0973-7</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-0296 |
ispartof | Journal of intelligent & robotic systems, 2019-12, Vol.96 (3-4), p.517-528 |
issn | 0921-0296 1573-0409 |
language | eng |
recordid | cdi_proquest_journals_2162674065 |
source | SpringerLink Journals |
subjects | Algorithms Artificial Intelligence Barriers Computer simulation Control Electrical Engineering Engineering Evolutionary algorithms Exposure Genetic algorithms Masking Mechanical Engineering Mechatronics Path planning Pattern analysis Product design Propagation Radar Radar cross sections Radar systems Risk Risk exposure Robotics Terrain |
title | Implementation and Analysis of Pattern Propagation Factor Based Radar Model for Path Planning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A49%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20and%20Analysis%20of%20Pattern%20Propagation%20Factor%20Based%20Radar%20Model%20for%20Path%20Planning&rft.jtitle=Journal%20of%20intelligent%20&%20robotic%20systems&rft.au=Woo,%20Sang-Hyo%20Arman&rft.date=2019-12-01&rft.volume=96&rft.issue=3-4&rft.spage=517&rft.epage=528&rft.pages=517-528&rft.issn=0921-0296&rft.eissn=1573-0409&rft_id=info:doi/10.1007/s10846-018-0973-7&rft_dat=%3Cgale_proqu%3EA725003701%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2162674065&rft_id=info:pmid/&rft_galeid=A725003701&rfr_iscdi=true |