Integration of Structure−Activity Relationship and Artificial Intelligence Systems To Improve in Silico Prediction of Ames Test Mutagenicity
The Ames mutagenicity test in Salmonella typhimurium is a bacterial short-term in vitro assay aimed at detecting the mutagenicity caused by chemicals. Mutagenicity is considered as an early alert for carcinogenicity. After a number of decades, several (Q)SAR studies on this endpoint yielded enough e...
Gespeichert in:
Veröffentlicht in: | Journal of chemical information and modeling 2007-01, Vol.47 (1), p.34-38 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 38 |
---|---|
container_issue | 1 |
container_start_page | 34 |
container_title | Journal of chemical information and modeling |
container_volume | 47 |
creator | Mazzatorta, Paolo Tran, Liên-Anh Schilter, Benoît Grigorov, Martin |
description | The Ames mutagenicity test in Salmonella typhimurium is a bacterial short-term in vitro assay aimed at detecting the mutagenicity caused by chemicals. Mutagenicity is considered as an early alert for carcinogenicity. After a number of decades, several (Q)SAR studies on this endpoint yielded enough evidence to make feasible the construction of reliable computational models for prediction of mutagenicity from the molecular structure of chemicals. In this study, we propose a combination of a fragment-based SAR model and an inductive database. The hybrid system was developed using a collection of 4337 chemicals (2401 mutagens and 1936 nonmutagens) and tested using 753 independent compounds (437 mutagens and 316 nonmutagens). The overall error of this system on the external test set compounds is 15% (sensitivity = 15%, specificity = 15%), which is quantitatively similar to the experimental error of Ames test data (average interlaboratory reproducibility determined by the National Toxicology Program). Moreover, each single prediction is provided with a specific confidence level. The results obtained give confidence that this system can be applied to support early and rapid evaluation of the level of mutagenicity concern. |
doi_str_mv | 10.1021/ci600411v |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_216263584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1204757211</sourcerecordid><originalsourceid>FETCH-LOGICAL-a378t-24b9a4115b49c51d9a6d4d8fb09295c82b2d84c5c7b18d130f2fe7cfa401bc063</originalsourceid><addsrcrecordid>eNplkDtOMzEUhS0E4l2wAWQhUVAM-DWecRlFPxAJBCJBorM8Hg8Y5pHf9kRkB1QULJGVYEiAgupaut895_gAsIfRMUYEn2jLEWIYz1bAJk6ZSARHd6vf71TwDbDl_SNClApO1sEGzgjNCeOb4HXUBnPvVLBdC7sKjoPrdeideX95G-hgZzbM4Y2pvwD_YKdQtSUcuGArq62q4ed9Xdt702oDx3MfTOPhpIOjZuq6mYG2hWNbW93Ba2dKq7-NBo2JnPEBXvZBxfMoF-Y7YK1StTe7y7kNbk__TYbnycXV2Wg4uEgUzfKQEFYIFT-cFkzoFJdC8ZKVeVUgQUSqc1KQMmc61VmB8xJTVJHKZLpSDOFCI063wcFCN4b838cU8rHrXRstJcGccJrmLEJHC0i7zntnKjl1tlFuLjGSn8XLn-Iju78U7IvGlL_ksukIJAvAxoqef_bKPUme0SyVk-uxzIeM0PPhnaSRP1zwSvvfcH-NPwDhIZxa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216263584</pqid></control><display><type>article</type><title>Integration of Structure−Activity Relationship and Artificial Intelligence Systems To Improve in Silico Prediction of Ames Test Mutagenicity</title><source>MEDLINE</source><source>ACS Publications</source><creator>Mazzatorta, Paolo ; Tran, Liên-Anh ; Schilter, Benoît ; Grigorov, Martin</creator><creatorcontrib>Mazzatorta, Paolo ; Tran, Liên-Anh ; Schilter, Benoît ; Grigorov, Martin</creatorcontrib><description>The Ames mutagenicity test in Salmonella typhimurium is a bacterial short-term in vitro assay aimed at detecting the mutagenicity caused by chemicals. Mutagenicity is considered as an early alert for carcinogenicity. After a number of decades, several (Q)SAR studies on this endpoint yielded enough evidence to make feasible the construction of reliable computational models for prediction of mutagenicity from the molecular structure of chemicals. In this study, we propose a combination of a fragment-based SAR model and an inductive database. The hybrid system was developed using a collection of 4337 chemicals (2401 mutagens and 1936 nonmutagens) and tested using 753 independent compounds (437 mutagens and 316 nonmutagens). The overall error of this system on the external test set compounds is 15% (sensitivity = 15%, specificity = 15%), which is quantitatively similar to the experimental error of Ames test data (average interlaboratory reproducibility determined by the National Toxicology Program). Moreover, each single prediction is provided with a specific confidence level. The results obtained give confidence that this system can be applied to support early and rapid evaluation of the level of mutagenicity concern.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/ci600411v</identifier><identifier>PMID: 17238246</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Artificial Intelligence ; Bacteria ; Chemistry ; Computational Biology ; Databases, Factual ; Mutagenicity Tests - methods ; Mutagenicity Tests - standards ; Quantitative Structure-Activity Relationship ; Salmonella ; Tests</subject><ispartof>Journal of chemical information and modeling, 2007-01, Vol.47 (1), p.34-38</ispartof><rights>Copyright © 2007 American Chemical Society</rights><rights>Copyright American Chemical Society Jan 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a378t-24b9a4115b49c51d9a6d4d8fb09295c82b2d84c5c7b18d130f2fe7cfa401bc063</citedby><cites>FETCH-LOGICAL-a378t-24b9a4115b49c51d9a6d4d8fb09295c82b2d84c5c7b18d130f2fe7cfa401bc063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ci600411v$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ci600411v$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17238246$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mazzatorta, Paolo</creatorcontrib><creatorcontrib>Tran, Liên-Anh</creatorcontrib><creatorcontrib>Schilter, Benoît</creatorcontrib><creatorcontrib>Grigorov, Martin</creatorcontrib><title>Integration of Structure−Activity Relationship and Artificial Intelligence Systems To Improve in Silico Prediction of Ames Test Mutagenicity</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>The Ames mutagenicity test in Salmonella typhimurium is a bacterial short-term in vitro assay aimed at detecting the mutagenicity caused by chemicals. Mutagenicity is considered as an early alert for carcinogenicity. After a number of decades, several (Q)SAR studies on this endpoint yielded enough evidence to make feasible the construction of reliable computational models for prediction of mutagenicity from the molecular structure of chemicals. In this study, we propose a combination of a fragment-based SAR model and an inductive database. The hybrid system was developed using a collection of 4337 chemicals (2401 mutagens and 1936 nonmutagens) and tested using 753 independent compounds (437 mutagens and 316 nonmutagens). The overall error of this system on the external test set compounds is 15% (sensitivity = 15%, specificity = 15%), which is quantitatively similar to the experimental error of Ames test data (average interlaboratory reproducibility determined by the National Toxicology Program). Moreover, each single prediction is provided with a specific confidence level. The results obtained give confidence that this system can be applied to support early and rapid evaluation of the level of mutagenicity concern.</description><subject>Artificial Intelligence</subject><subject>Bacteria</subject><subject>Chemistry</subject><subject>Computational Biology</subject><subject>Databases, Factual</subject><subject>Mutagenicity Tests - methods</subject><subject>Mutagenicity Tests - standards</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>Salmonella</subject><subject>Tests</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNplkDtOMzEUhS0E4l2wAWQhUVAM-DWecRlFPxAJBCJBorM8Hg8Y5pHf9kRkB1QULJGVYEiAgupaut895_gAsIfRMUYEn2jLEWIYz1bAJk6ZSARHd6vf71TwDbDl_SNClApO1sEGzgjNCeOb4HXUBnPvVLBdC7sKjoPrdeideX95G-hgZzbM4Y2pvwD_YKdQtSUcuGArq62q4ed9Xdt702oDx3MfTOPhpIOjZuq6mYG2hWNbW93Ba2dKq7-NBo2JnPEBXvZBxfMoF-Y7YK1StTe7y7kNbk__TYbnycXV2Wg4uEgUzfKQEFYIFT-cFkzoFJdC8ZKVeVUgQUSqc1KQMmc61VmB8xJTVJHKZLpSDOFCI063wcFCN4b838cU8rHrXRstJcGccJrmLEJHC0i7zntnKjl1tlFuLjGSn8XLn-Iju78U7IvGlL_ksukIJAvAxoqef_bKPUme0SyVk-uxzIeM0PPhnaSRP1zwSvvfcH-NPwDhIZxa</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Mazzatorta, Paolo</creator><creator>Tran, Liên-Anh</creator><creator>Schilter, Benoît</creator><creator>Grigorov, Martin</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070101</creationdate><title>Integration of Structure−Activity Relationship and Artificial Intelligence Systems To Improve in Silico Prediction of Ames Test Mutagenicity</title><author>Mazzatorta, Paolo ; Tran, Liên-Anh ; Schilter, Benoît ; Grigorov, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a378t-24b9a4115b49c51d9a6d4d8fb09295c82b2d84c5c7b18d130f2fe7cfa401bc063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Artificial Intelligence</topic><topic>Bacteria</topic><topic>Chemistry</topic><topic>Computational Biology</topic><topic>Databases, Factual</topic><topic>Mutagenicity Tests - methods</topic><topic>Mutagenicity Tests - standards</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>Salmonella</topic><topic>Tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mazzatorta, Paolo</creatorcontrib><creatorcontrib>Tran, Liên-Anh</creatorcontrib><creatorcontrib>Schilter, Benoît</creatorcontrib><creatorcontrib>Grigorov, Martin</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mazzatorta, Paolo</au><au>Tran, Liên-Anh</au><au>Schilter, Benoît</au><au>Grigorov, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of Structure−Activity Relationship and Artificial Intelligence Systems To Improve in Silico Prediction of Ames Test Mutagenicity</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2007-01-01</date><risdate>2007</risdate><volume>47</volume><issue>1</issue><spage>34</spage><epage>38</epage><pages>34-38</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>The Ames mutagenicity test in Salmonella typhimurium is a bacterial short-term in vitro assay aimed at detecting the mutagenicity caused by chemicals. Mutagenicity is considered as an early alert for carcinogenicity. After a number of decades, several (Q)SAR studies on this endpoint yielded enough evidence to make feasible the construction of reliable computational models for prediction of mutagenicity from the molecular structure of chemicals. In this study, we propose a combination of a fragment-based SAR model and an inductive database. The hybrid system was developed using a collection of 4337 chemicals (2401 mutagens and 1936 nonmutagens) and tested using 753 independent compounds (437 mutagens and 316 nonmutagens). The overall error of this system on the external test set compounds is 15% (sensitivity = 15%, specificity = 15%), which is quantitatively similar to the experimental error of Ames test data (average interlaboratory reproducibility determined by the National Toxicology Program). Moreover, each single prediction is provided with a specific confidence level. The results obtained give confidence that this system can be applied to support early and rapid evaluation of the level of mutagenicity concern.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>17238246</pmid><doi>10.1021/ci600411v</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9596 |
ispartof | Journal of chemical information and modeling, 2007-01, Vol.47 (1), p.34-38 |
issn | 1549-9596 1549-960X |
language | eng |
recordid | cdi_proquest_journals_216263584 |
source | MEDLINE; ACS Publications |
subjects | Artificial Intelligence Bacteria Chemistry Computational Biology Databases, Factual Mutagenicity Tests - methods Mutagenicity Tests - standards Quantitative Structure-Activity Relationship Salmonella Tests |
title | Integration of Structure−Activity Relationship and Artificial Intelligence Systems To Improve in Silico Prediction of Ames Test Mutagenicity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A18%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20Structure%E2%88%92Activity%20Relationship%20and%20Artificial%20Intelligence%20Systems%20To%20Improve%20in%20Silico%20Prediction%20of%20Ames%20Test%20Mutagenicity&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Mazzatorta,%20Paolo&rft.date=2007-01-01&rft.volume=47&rft.issue=1&rft.spage=34&rft.epage=38&rft.pages=34-38&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/ci600411v&rft_dat=%3Cproquest_cross%3E1204757211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=216263584&rft_id=info:pmid/17238246&rfr_iscdi=true |