Integration of Structure−Activity Relationship and Artificial Intelligence Systems To Improve in Silico Prediction of Ames Test Mutagenicity

The Ames mutagenicity test in Salmonella typhimurium is a bacterial short-term in vitro assay aimed at detecting the mutagenicity caused by chemicals. Mutagenicity is considered as an early alert for carcinogenicity. After a number of decades, several (Q)SAR studies on this endpoint yielded enough e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling 2007-01, Vol.47 (1), p.34-38
Hauptverfasser: Mazzatorta, Paolo, Tran, Liên-Anh, Schilter, Benoît, Grigorov, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 38
container_issue 1
container_start_page 34
container_title Journal of chemical information and modeling
container_volume 47
creator Mazzatorta, Paolo
Tran, Liên-Anh
Schilter, Benoît
Grigorov, Martin
description The Ames mutagenicity test in Salmonella typhimurium is a bacterial short-term in vitro assay aimed at detecting the mutagenicity caused by chemicals. Mutagenicity is considered as an early alert for carcinogenicity. After a number of decades, several (Q)SAR studies on this endpoint yielded enough evidence to make feasible the construction of reliable computational models for prediction of mutagenicity from the molecular structure of chemicals. In this study, we propose a combination of a fragment-based SAR model and an inductive database. The hybrid system was developed using a collection of 4337 chemicals (2401 mutagens and 1936 nonmutagens) and tested using 753 independent compounds (437 mutagens and 316 nonmutagens). The overall error of this system on the external test set compounds is 15% (sensitivity = 15%, specificity = 15%), which is quantitatively similar to the experimental error of Ames test data (average interlaboratory reproducibility determined by the National Toxicology Program). Moreover, each single prediction is provided with a specific confidence level. The results obtained give confidence that this system can be applied to support early and rapid evaluation of the level of mutagenicity concern.
doi_str_mv 10.1021/ci600411v
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_216263584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1204757211</sourcerecordid><originalsourceid>FETCH-LOGICAL-a378t-24b9a4115b49c51d9a6d4d8fb09295c82b2d84c5c7b18d130f2fe7cfa401bc063</originalsourceid><addsrcrecordid>eNplkDtOMzEUhS0E4l2wAWQhUVAM-DWecRlFPxAJBCJBorM8Hg8Y5pHf9kRkB1QULJGVYEiAgupaut895_gAsIfRMUYEn2jLEWIYz1bAJk6ZSARHd6vf71TwDbDl_SNClApO1sEGzgjNCeOb4HXUBnPvVLBdC7sKjoPrdeideX95G-hgZzbM4Y2pvwD_YKdQtSUcuGArq62q4ed9Xdt702oDx3MfTOPhpIOjZuq6mYG2hWNbW93Ba2dKq7-NBo2JnPEBXvZBxfMoF-Y7YK1StTe7y7kNbk__TYbnycXV2Wg4uEgUzfKQEFYIFT-cFkzoFJdC8ZKVeVUgQUSqc1KQMmc61VmB8xJTVJHKZLpSDOFCI063wcFCN4b838cU8rHrXRstJcGccJrmLEJHC0i7zntnKjl1tlFuLjGSn8XLn-Iju78U7IvGlL_ksukIJAvAxoqef_bKPUme0SyVk-uxzIeM0PPhnaSRP1zwSvvfcH-NPwDhIZxa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216263584</pqid></control><display><type>article</type><title>Integration of Structure−Activity Relationship and Artificial Intelligence Systems To Improve in Silico Prediction of Ames Test Mutagenicity</title><source>MEDLINE</source><source>ACS Publications</source><creator>Mazzatorta, Paolo ; Tran, Liên-Anh ; Schilter, Benoît ; Grigorov, Martin</creator><creatorcontrib>Mazzatorta, Paolo ; Tran, Liên-Anh ; Schilter, Benoît ; Grigorov, Martin</creatorcontrib><description>The Ames mutagenicity test in Salmonella typhimurium is a bacterial short-term in vitro assay aimed at detecting the mutagenicity caused by chemicals. Mutagenicity is considered as an early alert for carcinogenicity. After a number of decades, several (Q)SAR studies on this endpoint yielded enough evidence to make feasible the construction of reliable computational models for prediction of mutagenicity from the molecular structure of chemicals. In this study, we propose a combination of a fragment-based SAR model and an inductive database. The hybrid system was developed using a collection of 4337 chemicals (2401 mutagens and 1936 nonmutagens) and tested using 753 independent compounds (437 mutagens and 316 nonmutagens). The overall error of this system on the external test set compounds is 15% (sensitivity = 15%, specificity = 15%), which is quantitatively similar to the experimental error of Ames test data (average interlaboratory reproducibility determined by the National Toxicology Program). Moreover, each single prediction is provided with a specific confidence level. The results obtained give confidence that this system can be applied to support early and rapid evaluation of the level of mutagenicity concern.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/ci600411v</identifier><identifier>PMID: 17238246</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Artificial Intelligence ; Bacteria ; Chemistry ; Computational Biology ; Databases, Factual ; Mutagenicity Tests - methods ; Mutagenicity Tests - standards ; Quantitative Structure-Activity Relationship ; Salmonella ; Tests</subject><ispartof>Journal of chemical information and modeling, 2007-01, Vol.47 (1), p.34-38</ispartof><rights>Copyright © 2007 American Chemical Society</rights><rights>Copyright American Chemical Society Jan 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a378t-24b9a4115b49c51d9a6d4d8fb09295c82b2d84c5c7b18d130f2fe7cfa401bc063</citedby><cites>FETCH-LOGICAL-a378t-24b9a4115b49c51d9a6d4d8fb09295c82b2d84c5c7b18d130f2fe7cfa401bc063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ci600411v$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ci600411v$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17238246$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mazzatorta, Paolo</creatorcontrib><creatorcontrib>Tran, Liên-Anh</creatorcontrib><creatorcontrib>Schilter, Benoît</creatorcontrib><creatorcontrib>Grigorov, Martin</creatorcontrib><title>Integration of Structure−Activity Relationship and Artificial Intelligence Systems To Improve in Silico Prediction of Ames Test Mutagenicity</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>The Ames mutagenicity test in Salmonella typhimurium is a bacterial short-term in vitro assay aimed at detecting the mutagenicity caused by chemicals. Mutagenicity is considered as an early alert for carcinogenicity. After a number of decades, several (Q)SAR studies on this endpoint yielded enough evidence to make feasible the construction of reliable computational models for prediction of mutagenicity from the molecular structure of chemicals. In this study, we propose a combination of a fragment-based SAR model and an inductive database. The hybrid system was developed using a collection of 4337 chemicals (2401 mutagens and 1936 nonmutagens) and tested using 753 independent compounds (437 mutagens and 316 nonmutagens). The overall error of this system on the external test set compounds is 15% (sensitivity = 15%, specificity = 15%), which is quantitatively similar to the experimental error of Ames test data (average interlaboratory reproducibility determined by the National Toxicology Program). Moreover, each single prediction is provided with a specific confidence level. The results obtained give confidence that this system can be applied to support early and rapid evaluation of the level of mutagenicity concern.</description><subject>Artificial Intelligence</subject><subject>Bacteria</subject><subject>Chemistry</subject><subject>Computational Biology</subject><subject>Databases, Factual</subject><subject>Mutagenicity Tests - methods</subject><subject>Mutagenicity Tests - standards</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>Salmonella</subject><subject>Tests</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNplkDtOMzEUhS0E4l2wAWQhUVAM-DWecRlFPxAJBCJBorM8Hg8Y5pHf9kRkB1QULJGVYEiAgupaut895_gAsIfRMUYEn2jLEWIYz1bAJk6ZSARHd6vf71TwDbDl_SNClApO1sEGzgjNCeOb4HXUBnPvVLBdC7sKjoPrdeideX95G-hgZzbM4Y2pvwD_YKdQtSUcuGArq62q4ed9Xdt702oDx3MfTOPhpIOjZuq6mYG2hWNbW93Ba2dKq7-NBo2JnPEBXvZBxfMoF-Y7YK1StTe7y7kNbk__TYbnycXV2Wg4uEgUzfKQEFYIFT-cFkzoFJdC8ZKVeVUgQUSqc1KQMmc61VmB8xJTVJHKZLpSDOFCI063wcFCN4b838cU8rHrXRstJcGccJrmLEJHC0i7zntnKjl1tlFuLjGSn8XLn-Iju78U7IvGlL_ksukIJAvAxoqef_bKPUme0SyVk-uxzIeM0PPhnaSRP1zwSvvfcH-NPwDhIZxa</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Mazzatorta, Paolo</creator><creator>Tran, Liên-Anh</creator><creator>Schilter, Benoît</creator><creator>Grigorov, Martin</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070101</creationdate><title>Integration of Structure−Activity Relationship and Artificial Intelligence Systems To Improve in Silico Prediction of Ames Test Mutagenicity</title><author>Mazzatorta, Paolo ; Tran, Liên-Anh ; Schilter, Benoît ; Grigorov, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a378t-24b9a4115b49c51d9a6d4d8fb09295c82b2d84c5c7b18d130f2fe7cfa401bc063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Artificial Intelligence</topic><topic>Bacteria</topic><topic>Chemistry</topic><topic>Computational Biology</topic><topic>Databases, Factual</topic><topic>Mutagenicity Tests - methods</topic><topic>Mutagenicity Tests - standards</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>Salmonella</topic><topic>Tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mazzatorta, Paolo</creatorcontrib><creatorcontrib>Tran, Liên-Anh</creatorcontrib><creatorcontrib>Schilter, Benoît</creatorcontrib><creatorcontrib>Grigorov, Martin</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mazzatorta, Paolo</au><au>Tran, Liên-Anh</au><au>Schilter, Benoît</au><au>Grigorov, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of Structure−Activity Relationship and Artificial Intelligence Systems To Improve in Silico Prediction of Ames Test Mutagenicity</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2007-01-01</date><risdate>2007</risdate><volume>47</volume><issue>1</issue><spage>34</spage><epage>38</epage><pages>34-38</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>The Ames mutagenicity test in Salmonella typhimurium is a bacterial short-term in vitro assay aimed at detecting the mutagenicity caused by chemicals. Mutagenicity is considered as an early alert for carcinogenicity. After a number of decades, several (Q)SAR studies on this endpoint yielded enough evidence to make feasible the construction of reliable computational models for prediction of mutagenicity from the molecular structure of chemicals. In this study, we propose a combination of a fragment-based SAR model and an inductive database. The hybrid system was developed using a collection of 4337 chemicals (2401 mutagens and 1936 nonmutagens) and tested using 753 independent compounds (437 mutagens and 316 nonmutagens). The overall error of this system on the external test set compounds is 15% (sensitivity = 15%, specificity = 15%), which is quantitatively similar to the experimental error of Ames test data (average interlaboratory reproducibility determined by the National Toxicology Program). Moreover, each single prediction is provided with a specific confidence level. The results obtained give confidence that this system can be applied to support early and rapid evaluation of the level of mutagenicity concern.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>17238246</pmid><doi>10.1021/ci600411v</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-9596
ispartof Journal of chemical information and modeling, 2007-01, Vol.47 (1), p.34-38
issn 1549-9596
1549-960X
language eng
recordid cdi_proquest_journals_216263584
source MEDLINE; ACS Publications
subjects Artificial Intelligence
Bacteria
Chemistry
Computational Biology
Databases, Factual
Mutagenicity Tests - methods
Mutagenicity Tests - standards
Quantitative Structure-Activity Relationship
Salmonella
Tests
title Integration of Structure−Activity Relationship and Artificial Intelligence Systems To Improve in Silico Prediction of Ames Test Mutagenicity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A18%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20Structure%E2%88%92Activity%20Relationship%20and%20Artificial%20Intelligence%20Systems%20To%20Improve%20in%20Silico%20Prediction%20of%20Ames%20Test%20Mutagenicity&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Mazzatorta,%20Paolo&rft.date=2007-01-01&rft.volume=47&rft.issue=1&rft.spage=34&rft.epage=38&rft.pages=34-38&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/ci600411v&rft_dat=%3Cproquest_cross%3E1204757211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=216263584&rft_id=info:pmid/17238246&rfr_iscdi=true