Decomposition of a 2-Connected Graph into Three Connected Subgraphs
Let n 1 +n 2 +n 3 = n, and let G be a 2-connected graph on n vertices such that any 2-vertex cutset of G splits it into at most three parts. We prove that there exists a decomposition of the vertex set of G into three disjoint subsets V 1 , V 2 , V 3 such that |V i | = n i and the induced subgraph G...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2019-02, Vol.236 (5), p.490-502 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let n
1
+n
2
+n
3
= n, and let G be a 2-connected graph on n vertices such that any 2-vertex cutset of G splits it into at most three parts. We prove that there exists a decomposition of the vertex set of G into three disjoint subsets V
1
, V
2
, V
3
such that |V
i
| = n
i
and the induced subgraph G(V
i
) is connected for every i. |
---|---|
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-018-4127-z |