Decomposition of a 2-Connected Graph into Three Connected Subgraphs

Let n 1 +n 2 +n 3 = n, and let G be a 2-connected graph on n vertices such that any 2-vertex cutset of G splits it into at most three parts. We prove that there exists a decomposition of the vertex set of G into three disjoint subsets V 1 , V 2 , V 3 such that |V i | = n i and the induced subgraph G...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2019-02, Vol.236 (5), p.490-502
1. Verfasser: Karpov, D. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let n 1 +n 2 +n 3 = n, and let G be a 2-connected graph on n vertices such that any 2-vertex cutset of G splits it into at most three parts. We prove that there exists a decomposition of the vertex set of G into three disjoint subsets V 1 , V 2 , V 3 such that |V i | = n i and the induced subgraph G(V i ) is connected for every i.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-018-4127-z