Micropipette Contact Method to Investigate High‐Energy Cathode Materials by using an Ionic Liquid
The ionic liquid 1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide was used in the scanning micropipette contact method to extend the electrochemical window of the electrolyte solution and enable the study of lithium‐ion battery materials with higher oxidation potential. Localized electr...
Gespeichert in:
Veröffentlicht in: | ChemElectroChem 2019-01, Vol.6 (1), p.195-201 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 201 |
---|---|
container_issue | 1 |
container_start_page | 195 |
container_title | ChemElectroChem |
container_volume | 6 |
creator | Dayeh, Malak Ghavidel, M. R. Zamanzad Mauzeroll, Janine Schougaard, Steen B. |
description | The ionic liquid 1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide was used in the scanning micropipette contact method to extend the electrochemical window of the electrolyte solution and enable the study of lithium‐ion battery materials with higher oxidation potential. Localized electrochemical measurements were performed on lithium iron phosphate particles that were drop‐cast onto a glassy carbon substrate. Investigation of the active materials occurred on a small scale (ca. 10 μm diameter), defined by the area of meniscus contact between the electrolyte solution in the micropipette and the substrate. Our studies showed that the SMCM probe is stable and can be used to analyze high energy lithium‐ion battery materials in the range of 2.5 to 5.1 V vs. Li/Li+.
Extended potential, higher efficiency: Scanning micropipette contact method (SMCM) is extended to ionic liquid studies. The potential window for 1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI TFSI) ionic liquid is suitable to examine high‐energy lithium‐ion battery materials. The electrochemical properties of lithium iron phosphate (LFP) particles drop‐cast onto a glassy carbon substrate are probed under inert atmosphere. SMCM‐coulombic efficiency of LFP particles in EMI TFSI is estimated to be higher than 90 %. |
doi_str_mv | 10.1002/celc.201800750 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2162444773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2162444773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4200-c436f109528af6f22db26c5c65a60e010b52555ea8d9e821c017b648f640aa2f3</originalsourceid><addsrcrecordid>eNqFULFOwzAQtRBIVKUrsyXmlrMTO8mIokIrpWKB2XIcO3VVktROQNn4BL6RL8FVEbCx3J303ru79xC6JrAgAPRW6b1aUCApQMLgDE0oyfgcKOHnf-ZLNPN-BwCEAItSPkFqY5VrO9vpvtc4b5teqh5vdL9tK9y3eN28at_bWgZ0Zevt5_vHstGuHnEujxyNNwFyVu49Lkc8eNvUWDZ43TZW4cIeBltdoQsTcD377lP0fL98ylfz4vFhnd8VcxVTgFAjbghkjKbScENpVVKumOJMctBAoGSUMaZlWmU6pUQBSUoep4bHICU10RTdnPZ2rj0M4W2xawfXhJMieKdxHCdJFFiLEyv49t5pIzpnX6QbBQFxzFIcsxQ_WQZBdhK82b0e_2GLfFnkv9ov2TZ4QQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2162444773</pqid></control><display><type>article</type><title>Micropipette Contact Method to Investigate High‐Energy Cathode Materials by using an Ionic Liquid</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Dayeh, Malak ; Ghavidel, M. R. Zamanzad ; Mauzeroll, Janine ; Schougaard, Steen B.</creator><creatorcontrib>Dayeh, Malak ; Ghavidel, M. R. Zamanzad ; Mauzeroll, Janine ; Schougaard, Steen B.</creatorcontrib><description>The ionic liquid 1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide was used in the scanning micropipette contact method to extend the electrochemical window of the electrolyte solution and enable the study of lithium‐ion battery materials with higher oxidation potential. Localized electrochemical measurements were performed on lithium iron phosphate particles that were drop‐cast onto a glassy carbon substrate. Investigation of the active materials occurred on a small scale (ca. 10 μm diameter), defined by the area of meniscus contact between the electrolyte solution in the micropipette and the substrate. Our studies showed that the SMCM probe is stable and can be used to analyze high energy lithium‐ion battery materials in the range of 2.5 to 5.1 V vs. Li/Li+.
Extended potential, higher efficiency: Scanning micropipette contact method (SMCM) is extended to ionic liquid studies. The potential window for 1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI TFSI) ionic liquid is suitable to examine high‐energy lithium‐ion battery materials. The electrochemical properties of lithium iron phosphate (LFP) particles drop‐cast onto a glassy carbon substrate are probed under inert atmosphere. SMCM‐coulombic efficiency of LFP particles in EMI TFSI is estimated to be higher than 90 %.</description><identifier>ISSN: 2196-0216</identifier><identifier>EISSN: 2196-0216</identifier><identifier>DOI: 10.1002/celc.201800750</identifier><language>eng</language><publisher>Weinheim: John Wiley & Sons, Inc</publisher><subject>Batteries ; Electrode materials ; Electrolytes ; Glassy carbon ; Ionic liquids ; Ions ; Lithium ; lithium iron phosphate ; lithium-ion batteries ; mixed No−Co-Mn oxides ; Oxidation ; scanning micropipette contact method ; Substrates</subject><ispartof>ChemElectroChem, 2019-01, Vol.6 (1), p.195-201</ispartof><rights>2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4200-c436f109528af6f22db26c5c65a60e010b52555ea8d9e821c017b648f640aa2f3</citedby><cites>FETCH-LOGICAL-c4200-c436f109528af6f22db26c5c65a60e010b52555ea8d9e821c017b648f640aa2f3</cites><orcidid>0000-0003-4752-7507</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcelc.201800750$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcelc.201800750$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Dayeh, Malak</creatorcontrib><creatorcontrib>Ghavidel, M. R. Zamanzad</creatorcontrib><creatorcontrib>Mauzeroll, Janine</creatorcontrib><creatorcontrib>Schougaard, Steen B.</creatorcontrib><title>Micropipette Contact Method to Investigate High‐Energy Cathode Materials by using an Ionic Liquid</title><title>ChemElectroChem</title><description>The ionic liquid 1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide was used in the scanning micropipette contact method to extend the electrochemical window of the electrolyte solution and enable the study of lithium‐ion battery materials with higher oxidation potential. Localized electrochemical measurements were performed on lithium iron phosphate particles that were drop‐cast onto a glassy carbon substrate. Investigation of the active materials occurred on a small scale (ca. 10 μm diameter), defined by the area of meniscus contact between the electrolyte solution in the micropipette and the substrate. Our studies showed that the SMCM probe is stable and can be used to analyze high energy lithium‐ion battery materials in the range of 2.5 to 5.1 V vs. Li/Li+.
Extended potential, higher efficiency: Scanning micropipette contact method (SMCM) is extended to ionic liquid studies. The potential window for 1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI TFSI) ionic liquid is suitable to examine high‐energy lithium‐ion battery materials. The electrochemical properties of lithium iron phosphate (LFP) particles drop‐cast onto a glassy carbon substrate are probed under inert atmosphere. SMCM‐coulombic efficiency of LFP particles in EMI TFSI is estimated to be higher than 90 %.</description><subject>Batteries</subject><subject>Electrode materials</subject><subject>Electrolytes</subject><subject>Glassy carbon</subject><subject>Ionic liquids</subject><subject>Ions</subject><subject>Lithium</subject><subject>lithium iron phosphate</subject><subject>lithium-ion batteries</subject><subject>mixed No−Co-Mn oxides</subject><subject>Oxidation</subject><subject>scanning micropipette contact method</subject><subject>Substrates</subject><issn>2196-0216</issn><issn>2196-0216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFULFOwzAQtRBIVKUrsyXmlrMTO8mIokIrpWKB2XIcO3VVktROQNn4BL6RL8FVEbCx3J303ru79xC6JrAgAPRW6b1aUCApQMLgDE0oyfgcKOHnf-ZLNPN-BwCEAItSPkFqY5VrO9vpvtc4b5teqh5vdL9tK9y3eN28at_bWgZ0Zevt5_vHstGuHnEujxyNNwFyVu49Lkc8eNvUWDZ43TZW4cIeBltdoQsTcD377lP0fL98ylfz4vFhnd8VcxVTgFAjbghkjKbScENpVVKumOJMctBAoGSUMaZlWmU6pUQBSUoep4bHICU10RTdnPZ2rj0M4W2xawfXhJMieKdxHCdJFFiLEyv49t5pIzpnX6QbBQFxzFIcsxQ_WQZBdhK82b0e_2GLfFnkv9ov2TZ4QQ</recordid><startdate>20190102</startdate><enddate>20190102</enddate><creator>Dayeh, Malak</creator><creator>Ghavidel, M. R. Zamanzad</creator><creator>Mauzeroll, Janine</creator><creator>Schougaard, Steen B.</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-4752-7507</orcidid></search><sort><creationdate>20190102</creationdate><title>Micropipette Contact Method to Investigate High‐Energy Cathode Materials by using an Ionic Liquid</title><author>Dayeh, Malak ; Ghavidel, M. R. Zamanzad ; Mauzeroll, Janine ; Schougaard, Steen B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4200-c436f109528af6f22db26c5c65a60e010b52555ea8d9e821c017b648f640aa2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Batteries</topic><topic>Electrode materials</topic><topic>Electrolytes</topic><topic>Glassy carbon</topic><topic>Ionic liquids</topic><topic>Ions</topic><topic>Lithium</topic><topic>lithium iron phosphate</topic><topic>lithium-ion batteries</topic><topic>mixed No−Co-Mn oxides</topic><topic>Oxidation</topic><topic>scanning micropipette contact method</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dayeh, Malak</creatorcontrib><creatorcontrib>Ghavidel, M. R. Zamanzad</creatorcontrib><creatorcontrib>Mauzeroll, Janine</creatorcontrib><creatorcontrib>Schougaard, Steen B.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>ChemElectroChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dayeh, Malak</au><au>Ghavidel, M. R. Zamanzad</au><au>Mauzeroll, Janine</au><au>Schougaard, Steen B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micropipette Contact Method to Investigate High‐Energy Cathode Materials by using an Ionic Liquid</atitle><jtitle>ChemElectroChem</jtitle><date>2019-01-02</date><risdate>2019</risdate><volume>6</volume><issue>1</issue><spage>195</spage><epage>201</epage><pages>195-201</pages><issn>2196-0216</issn><eissn>2196-0216</eissn><abstract>The ionic liquid 1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide was used in the scanning micropipette contact method to extend the electrochemical window of the electrolyte solution and enable the study of lithium‐ion battery materials with higher oxidation potential. Localized electrochemical measurements were performed on lithium iron phosphate particles that were drop‐cast onto a glassy carbon substrate. Investigation of the active materials occurred on a small scale (ca. 10 μm diameter), defined by the area of meniscus contact between the electrolyte solution in the micropipette and the substrate. Our studies showed that the SMCM probe is stable and can be used to analyze high energy lithium‐ion battery materials in the range of 2.5 to 5.1 V vs. Li/Li+.
Extended potential, higher efficiency: Scanning micropipette contact method (SMCM) is extended to ionic liquid studies. The potential window for 1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI TFSI) ionic liquid is suitable to examine high‐energy lithium‐ion battery materials. The electrochemical properties of lithium iron phosphate (LFP) particles drop‐cast onto a glassy carbon substrate are probed under inert atmosphere. SMCM‐coulombic efficiency of LFP particles in EMI TFSI is estimated to be higher than 90 %.</abstract><cop>Weinheim</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/celc.201800750</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4752-7507</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2196-0216 |
ispartof | ChemElectroChem, 2019-01, Vol.6 (1), p.195-201 |
issn | 2196-0216 2196-0216 |
language | eng |
recordid | cdi_proquest_journals_2162444773 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Batteries Electrode materials Electrolytes Glassy carbon Ionic liquids Ions Lithium lithium iron phosphate lithium-ion batteries mixed No−Co-Mn oxides Oxidation scanning micropipette contact method Substrates |
title | Micropipette Contact Method to Investigate High‐Energy Cathode Materials by using an Ionic Liquid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A11%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micropipette%20Contact%20Method%20to%20Investigate%20High%E2%80%90Energy%20Cathode%20Materials%20by%20using%20an%20Ionic%20Liquid&rft.jtitle=ChemElectroChem&rft.au=Dayeh,%20Malak&rft.date=2019-01-02&rft.volume=6&rft.issue=1&rft.spage=195&rft.epage=201&rft.pages=195-201&rft.issn=2196-0216&rft.eissn=2196-0216&rft_id=info:doi/10.1002/celc.201800750&rft_dat=%3Cproquest_cross%3E2162444773%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2162444773&rft_id=info:pmid/&rfr_iscdi=true |