Micropipette Contact Method to Investigate High‐Energy Cathode Materials by using an Ionic Liquid

The ionic liquid 1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide was used in the scanning micropipette contact method to extend the electrochemical window of the electrolyte solution and enable the study of lithium‐ion battery materials with higher oxidation potential. Localized electr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemElectroChem 2019-01, Vol.6 (1), p.195-201
Hauptverfasser: Dayeh, Malak, Ghavidel, M. R. Zamanzad, Mauzeroll, Janine, Schougaard, Steen B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 201
container_issue 1
container_start_page 195
container_title ChemElectroChem
container_volume 6
creator Dayeh, Malak
Ghavidel, M. R. Zamanzad
Mauzeroll, Janine
Schougaard, Steen B.
description The ionic liquid 1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide was used in the scanning micropipette contact method to extend the electrochemical window of the electrolyte solution and enable the study of lithium‐ion battery materials with higher oxidation potential. Localized electrochemical measurements were performed on lithium iron phosphate particles that were drop‐cast onto a glassy carbon substrate. Investigation of the active materials occurred on a small scale (ca. 10 μm diameter), defined by the area of meniscus contact between the electrolyte solution in the micropipette and the substrate. Our studies showed that the SMCM probe is stable and can be used to analyze high energy lithium‐ion battery materials in the range of 2.5 to 5.1 V vs. Li/Li+. Extended potential, higher efficiency: Scanning micropipette contact method (SMCM) is extended to ionic liquid studies. The potential window for 1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI TFSI) ionic liquid is suitable to examine high‐energy lithium‐ion battery materials. The electrochemical properties of lithium iron phosphate (LFP) particles drop‐cast onto a glassy carbon substrate are probed under inert atmosphere. SMCM‐coulombic efficiency of LFP particles in EMI TFSI is estimated to be higher than 90 %.
doi_str_mv 10.1002/celc.201800750
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2162444773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2162444773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4200-c436f109528af6f22db26c5c65a60e010b52555ea8d9e821c017b648f640aa2f3</originalsourceid><addsrcrecordid>eNqFULFOwzAQtRBIVKUrsyXmlrMTO8mIokIrpWKB2XIcO3VVktROQNn4BL6RL8FVEbCx3J303ru79xC6JrAgAPRW6b1aUCApQMLgDE0oyfgcKOHnf-ZLNPN-BwCEAItSPkFqY5VrO9vpvtc4b5teqh5vdL9tK9y3eN28at_bWgZ0Zevt5_vHstGuHnEujxyNNwFyVu49Lkc8eNvUWDZ43TZW4cIeBltdoQsTcD377lP0fL98ylfz4vFhnd8VcxVTgFAjbghkjKbScENpVVKumOJMctBAoGSUMaZlWmU6pUQBSUoep4bHICU10RTdnPZ2rj0M4W2xawfXhJMieKdxHCdJFFiLEyv49t5pIzpnX6QbBQFxzFIcsxQ_WQZBdhK82b0e_2GLfFnkv9ov2TZ4QQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2162444773</pqid></control><display><type>article</type><title>Micropipette Contact Method to Investigate High‐Energy Cathode Materials by using an Ionic Liquid</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Dayeh, Malak ; Ghavidel, M. R. Zamanzad ; Mauzeroll, Janine ; Schougaard, Steen B.</creator><creatorcontrib>Dayeh, Malak ; Ghavidel, M. R. Zamanzad ; Mauzeroll, Janine ; Schougaard, Steen B.</creatorcontrib><description>The ionic liquid 1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide was used in the scanning micropipette contact method to extend the electrochemical window of the electrolyte solution and enable the study of lithium‐ion battery materials with higher oxidation potential. Localized electrochemical measurements were performed on lithium iron phosphate particles that were drop‐cast onto a glassy carbon substrate. Investigation of the active materials occurred on a small scale (ca. 10 μm diameter), defined by the area of meniscus contact between the electrolyte solution in the micropipette and the substrate. Our studies showed that the SMCM probe is stable and can be used to analyze high energy lithium‐ion battery materials in the range of 2.5 to 5.1 V vs. Li/Li+. Extended potential, higher efficiency: Scanning micropipette contact method (SMCM) is extended to ionic liquid studies. The potential window for 1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI TFSI) ionic liquid is suitable to examine high‐energy lithium‐ion battery materials. The electrochemical properties of lithium iron phosphate (LFP) particles drop‐cast onto a glassy carbon substrate are probed under inert atmosphere. SMCM‐coulombic efficiency of LFP particles in EMI TFSI is estimated to be higher than 90 %.</description><identifier>ISSN: 2196-0216</identifier><identifier>EISSN: 2196-0216</identifier><identifier>DOI: 10.1002/celc.201800750</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>Batteries ; Electrode materials ; Electrolytes ; Glassy carbon ; Ionic liquids ; Ions ; Lithium ; lithium iron phosphate ; lithium-ion batteries ; mixed No−Co-Mn oxides ; Oxidation ; scanning micropipette contact method ; Substrates</subject><ispartof>ChemElectroChem, 2019-01, Vol.6 (1), p.195-201</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4200-c436f109528af6f22db26c5c65a60e010b52555ea8d9e821c017b648f640aa2f3</citedby><cites>FETCH-LOGICAL-c4200-c436f109528af6f22db26c5c65a60e010b52555ea8d9e821c017b648f640aa2f3</cites><orcidid>0000-0003-4752-7507</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcelc.201800750$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcelc.201800750$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Dayeh, Malak</creatorcontrib><creatorcontrib>Ghavidel, M. R. Zamanzad</creatorcontrib><creatorcontrib>Mauzeroll, Janine</creatorcontrib><creatorcontrib>Schougaard, Steen B.</creatorcontrib><title>Micropipette Contact Method to Investigate High‐Energy Cathode Materials by using an Ionic Liquid</title><title>ChemElectroChem</title><description>The ionic liquid 1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide was used in the scanning micropipette contact method to extend the electrochemical window of the electrolyte solution and enable the study of lithium‐ion battery materials with higher oxidation potential. Localized electrochemical measurements were performed on lithium iron phosphate particles that were drop‐cast onto a glassy carbon substrate. Investigation of the active materials occurred on a small scale (ca. 10 μm diameter), defined by the area of meniscus contact between the electrolyte solution in the micropipette and the substrate. Our studies showed that the SMCM probe is stable and can be used to analyze high energy lithium‐ion battery materials in the range of 2.5 to 5.1 V vs. Li/Li+. Extended potential, higher efficiency: Scanning micropipette contact method (SMCM) is extended to ionic liquid studies. The potential window for 1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI TFSI) ionic liquid is suitable to examine high‐energy lithium‐ion battery materials. The electrochemical properties of lithium iron phosphate (LFP) particles drop‐cast onto a glassy carbon substrate are probed under inert atmosphere. SMCM‐coulombic efficiency of LFP particles in EMI TFSI is estimated to be higher than 90 %.</description><subject>Batteries</subject><subject>Electrode materials</subject><subject>Electrolytes</subject><subject>Glassy carbon</subject><subject>Ionic liquids</subject><subject>Ions</subject><subject>Lithium</subject><subject>lithium iron phosphate</subject><subject>lithium-ion batteries</subject><subject>mixed No−Co-Mn oxides</subject><subject>Oxidation</subject><subject>scanning micropipette contact method</subject><subject>Substrates</subject><issn>2196-0216</issn><issn>2196-0216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFULFOwzAQtRBIVKUrsyXmlrMTO8mIokIrpWKB2XIcO3VVktROQNn4BL6RL8FVEbCx3J303ru79xC6JrAgAPRW6b1aUCApQMLgDE0oyfgcKOHnf-ZLNPN-BwCEAItSPkFqY5VrO9vpvtc4b5teqh5vdL9tK9y3eN28at_bWgZ0Zevt5_vHstGuHnEujxyNNwFyVu49Lkc8eNvUWDZ43TZW4cIeBltdoQsTcD377lP0fL98ylfz4vFhnd8VcxVTgFAjbghkjKbScENpVVKumOJMctBAoGSUMaZlWmU6pUQBSUoep4bHICU10RTdnPZ2rj0M4W2xawfXhJMieKdxHCdJFFiLEyv49t5pIzpnX6QbBQFxzFIcsxQ_WQZBdhK82b0e_2GLfFnkv9ov2TZ4QQ</recordid><startdate>20190102</startdate><enddate>20190102</enddate><creator>Dayeh, Malak</creator><creator>Ghavidel, M. R. Zamanzad</creator><creator>Mauzeroll, Janine</creator><creator>Schougaard, Steen B.</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-4752-7507</orcidid></search><sort><creationdate>20190102</creationdate><title>Micropipette Contact Method to Investigate High‐Energy Cathode Materials by using an Ionic Liquid</title><author>Dayeh, Malak ; Ghavidel, M. R. Zamanzad ; Mauzeroll, Janine ; Schougaard, Steen B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4200-c436f109528af6f22db26c5c65a60e010b52555ea8d9e821c017b648f640aa2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Batteries</topic><topic>Electrode materials</topic><topic>Electrolytes</topic><topic>Glassy carbon</topic><topic>Ionic liquids</topic><topic>Ions</topic><topic>Lithium</topic><topic>lithium iron phosphate</topic><topic>lithium-ion batteries</topic><topic>mixed No−Co-Mn oxides</topic><topic>Oxidation</topic><topic>scanning micropipette contact method</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dayeh, Malak</creatorcontrib><creatorcontrib>Ghavidel, M. R. Zamanzad</creatorcontrib><creatorcontrib>Mauzeroll, Janine</creatorcontrib><creatorcontrib>Schougaard, Steen B.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>ChemElectroChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dayeh, Malak</au><au>Ghavidel, M. R. Zamanzad</au><au>Mauzeroll, Janine</au><au>Schougaard, Steen B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micropipette Contact Method to Investigate High‐Energy Cathode Materials by using an Ionic Liquid</atitle><jtitle>ChemElectroChem</jtitle><date>2019-01-02</date><risdate>2019</risdate><volume>6</volume><issue>1</issue><spage>195</spage><epage>201</epage><pages>195-201</pages><issn>2196-0216</issn><eissn>2196-0216</eissn><abstract>The ionic liquid 1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide was used in the scanning micropipette contact method to extend the electrochemical window of the electrolyte solution and enable the study of lithium‐ion battery materials with higher oxidation potential. Localized electrochemical measurements were performed on lithium iron phosphate particles that were drop‐cast onto a glassy carbon substrate. Investigation of the active materials occurred on a small scale (ca. 10 μm diameter), defined by the area of meniscus contact between the electrolyte solution in the micropipette and the substrate. Our studies showed that the SMCM probe is stable and can be used to analyze high energy lithium‐ion battery materials in the range of 2.5 to 5.1 V vs. Li/Li+. Extended potential, higher efficiency: Scanning micropipette contact method (SMCM) is extended to ionic liquid studies. The potential window for 1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI TFSI) ionic liquid is suitable to examine high‐energy lithium‐ion battery materials. The electrochemical properties of lithium iron phosphate (LFP) particles drop‐cast onto a glassy carbon substrate are probed under inert atmosphere. SMCM‐coulombic efficiency of LFP particles in EMI TFSI is estimated to be higher than 90 %.</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/celc.201800750</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4752-7507</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2196-0216
ispartof ChemElectroChem, 2019-01, Vol.6 (1), p.195-201
issn 2196-0216
2196-0216
language eng
recordid cdi_proquest_journals_2162444773
source Wiley Online Library Journals Frontfile Complete
subjects Batteries
Electrode materials
Electrolytes
Glassy carbon
Ionic liquids
Ions
Lithium
lithium iron phosphate
lithium-ion batteries
mixed No−Co-Mn oxides
Oxidation
scanning micropipette contact method
Substrates
title Micropipette Contact Method to Investigate High‐Energy Cathode Materials by using an Ionic Liquid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A11%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micropipette%20Contact%20Method%20to%20Investigate%20High%E2%80%90Energy%20Cathode%20Materials%20by%20using%20an%20Ionic%20Liquid&rft.jtitle=ChemElectroChem&rft.au=Dayeh,%20Malak&rft.date=2019-01-02&rft.volume=6&rft.issue=1&rft.spage=195&rft.epage=201&rft.pages=195-201&rft.issn=2196-0216&rft.eissn=2196-0216&rft_id=info:doi/10.1002/celc.201800750&rft_dat=%3Cproquest_cross%3E2162444773%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2162444773&rft_id=info:pmid/&rfr_iscdi=true