Development of a Split Bipolar Electrode System for Electrochemical Fluorination of Triphenylmethane

To overcome the problem of electrochemical fluorination methods using a large amount of supporting electrolytes and fluorine sources, we employed a split bipolar electrode (s‐BPE) system, in which electrode reactions occur in a low concentration of supporting electrolyte and electricity is monitored...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemElectroChem 2019-01, Vol.6 (1), p.97-100
Hauptverfasser: Miyamoto, Kazuhiro, Nishiyama, Hiroki, Tomita, Ikuyoshi, Inagi, Shinsuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 100
container_issue 1
container_start_page 97
container_title ChemElectroChem
container_volume 6
creator Miyamoto, Kazuhiro
Nishiyama, Hiroki
Tomita, Ikuyoshi
Inagi, Shinsuke
description To overcome the problem of electrochemical fluorination methods using a large amount of supporting electrolytes and fluorine sources, we employed a split bipolar electrode (s‐BPE) system, in which electrode reactions occur in a low concentration of supporting electrolyte and electricity is monitored. We optimized the electrochemical parameters for the s‐BPE system using a U‐shaped electrochemical cell and investigated the electrochemical fluorination of triphenylmethane as a model substrate in the presence of potassium fluoride (KF) or cesium fluoride (CsF) as a supporting electrolyte and a fluorine source dissolved by the help of poly(ethylene glycol) (PEG) additive. The fluorination of triphenylphoshine was also examined under the optimized conditions. Electrochemical fluorination of triphenylmethane is carried out using a low concentration (1 mM) of CsF on a split bipolar electrode (s‐BPE) system, in which currents and charges passed through the BPE could be monitored. Such an operation in low concentration of supporting electrolyte for organic electosynthesis is an ideal method in terms of waste reduction and easy separation process.
doi_str_mv 10.1002/celc.201801216
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2162444410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2162444410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4206-61c2b5d12a1ca1e738a24e0bb3d87f6bd329c73e26599cf8d34f5ead97d0821f3</originalsourceid><addsrcrecordid>eNqFUE1LAzEQDaJgqb16DnjeOsl-H7W2KhQ8tJ5DNpnQlOxmzW6V_fduqVRvzmUew_tgHiG3DOYMgN8rdGrOgRXAOMsuyISzMotgxJd_8DWZdd0eABiDNC6yCdFP-InOtzU2PfWGSrppne3po229k4EuHao-eI10M3Q91tT481HtsLZKOrpyBx9sI3vrm6PJNth2h83gaux3ssEbcmWk63D2s6fkfbXcLl6i9dvz6-JhHamEQxZlTPEq1YxLpiTDPC4kTxCqKtZFbrJKx7xUeYw8S8tSmULHiUlR6jLXUHBm4im5O_m2wX8csOvF3h9CM0aK8XmejMNgZM1PLBV81wU0og22lmEQDMSxTHEsU5zLHAXlSfBlHQ7_sMViuV78ar8Bv9N5Yw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2162444410</pqid></control><display><type>article</type><title>Development of a Split Bipolar Electrode System for Electrochemical Fluorination of Triphenylmethane</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Miyamoto, Kazuhiro ; Nishiyama, Hiroki ; Tomita, Ikuyoshi ; Inagi, Shinsuke</creator><creatorcontrib>Miyamoto, Kazuhiro ; Nishiyama, Hiroki ; Tomita, Ikuyoshi ; Inagi, Shinsuke</creatorcontrib><description>To overcome the problem of electrochemical fluorination methods using a large amount of supporting electrolytes and fluorine sources, we employed a split bipolar electrode (s‐BPE) system, in which electrode reactions occur in a low concentration of supporting electrolyte and electricity is monitored. We optimized the electrochemical parameters for the s‐BPE system using a U‐shaped electrochemical cell and investigated the electrochemical fluorination of triphenylmethane as a model substrate in the presence of potassium fluoride (KF) or cesium fluoride (CsF) as a supporting electrolyte and a fluorine source dissolved by the help of poly(ethylene glycol) (PEG) additive. The fluorination of triphenylphoshine was also examined under the optimized conditions. Electrochemical fluorination of triphenylmethane is carried out using a low concentration (1 mM) of CsF on a split bipolar electrode (s‐BPE) system, in which currents and charges passed through the BPE could be monitored. Such an operation in low concentration of supporting electrolyte for organic electosynthesis is an ideal method in terms of waste reduction and easy separation process.</description><identifier>ISSN: 2196-0216</identifier><identifier>EISSN: 2196-0216</identifier><identifier>DOI: 10.1002/celc.201801216</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>bipolar electrochemistry ; Cesium ; Cesium fluorides ; Electrochemical cells ; electrochemical fluorination ; Electrodes ; Electrolytes ; Fluorides ; Fluorination ; Fluorine ; metal fluoride ; organofluorine compounds ; Polyethylene glycol ; Potassium fluoride ; split bipolar electrode ; Substrates</subject><ispartof>ChemElectroChem, 2019-01, Vol.6 (1), p.97-100</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4206-61c2b5d12a1ca1e738a24e0bb3d87f6bd329c73e26599cf8d34f5ead97d0821f3</citedby><cites>FETCH-LOGICAL-c4206-61c2b5d12a1ca1e738a24e0bb3d87f6bd329c73e26599cf8d34f5ead97d0821f3</cites><orcidid>0000-0002-9867-1210</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcelc.201801216$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcelc.201801216$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Miyamoto, Kazuhiro</creatorcontrib><creatorcontrib>Nishiyama, Hiroki</creatorcontrib><creatorcontrib>Tomita, Ikuyoshi</creatorcontrib><creatorcontrib>Inagi, Shinsuke</creatorcontrib><title>Development of a Split Bipolar Electrode System for Electrochemical Fluorination of Triphenylmethane</title><title>ChemElectroChem</title><description>To overcome the problem of electrochemical fluorination methods using a large amount of supporting electrolytes and fluorine sources, we employed a split bipolar electrode (s‐BPE) system, in which electrode reactions occur in a low concentration of supporting electrolyte and electricity is monitored. We optimized the electrochemical parameters for the s‐BPE system using a U‐shaped electrochemical cell and investigated the electrochemical fluorination of triphenylmethane as a model substrate in the presence of potassium fluoride (KF) or cesium fluoride (CsF) as a supporting electrolyte and a fluorine source dissolved by the help of poly(ethylene glycol) (PEG) additive. The fluorination of triphenylphoshine was also examined under the optimized conditions. Electrochemical fluorination of triphenylmethane is carried out using a low concentration (1 mM) of CsF on a split bipolar electrode (s‐BPE) system, in which currents and charges passed through the BPE could be monitored. Such an operation in low concentration of supporting electrolyte for organic electosynthesis is an ideal method in terms of waste reduction and easy separation process.</description><subject>bipolar electrochemistry</subject><subject>Cesium</subject><subject>Cesium fluorides</subject><subject>Electrochemical cells</subject><subject>electrochemical fluorination</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Fluorides</subject><subject>Fluorination</subject><subject>Fluorine</subject><subject>metal fluoride</subject><subject>organofluorine compounds</subject><subject>Polyethylene glycol</subject><subject>Potassium fluoride</subject><subject>split bipolar electrode</subject><subject>Substrates</subject><issn>2196-0216</issn><issn>2196-0216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LAzEQDaJgqb16DnjeOsl-H7W2KhQ8tJ5DNpnQlOxmzW6V_fduqVRvzmUew_tgHiG3DOYMgN8rdGrOgRXAOMsuyISzMotgxJd_8DWZdd0eABiDNC6yCdFP-InOtzU2PfWGSrppne3po229k4EuHao-eI10M3Q91tT481HtsLZKOrpyBx9sI3vrm6PJNth2h83gaux3ssEbcmWk63D2s6fkfbXcLl6i9dvz6-JhHamEQxZlTPEq1YxLpiTDPC4kTxCqKtZFbrJKx7xUeYw8S8tSmULHiUlR6jLXUHBm4im5O_m2wX8csOvF3h9CM0aK8XmejMNgZM1PLBV81wU0og22lmEQDMSxTHEsU5zLHAXlSfBlHQ7_sMViuV78ar8Bv9N5Yw</recordid><startdate>20190102</startdate><enddate>20190102</enddate><creator>Miyamoto, Kazuhiro</creator><creator>Nishiyama, Hiroki</creator><creator>Tomita, Ikuyoshi</creator><creator>Inagi, Shinsuke</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-9867-1210</orcidid></search><sort><creationdate>20190102</creationdate><title>Development of a Split Bipolar Electrode System for Electrochemical Fluorination of Triphenylmethane</title><author>Miyamoto, Kazuhiro ; Nishiyama, Hiroki ; Tomita, Ikuyoshi ; Inagi, Shinsuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4206-61c2b5d12a1ca1e738a24e0bb3d87f6bd329c73e26599cf8d34f5ead97d0821f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>bipolar electrochemistry</topic><topic>Cesium</topic><topic>Cesium fluorides</topic><topic>Electrochemical cells</topic><topic>electrochemical fluorination</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Fluorides</topic><topic>Fluorination</topic><topic>Fluorine</topic><topic>metal fluoride</topic><topic>organofluorine compounds</topic><topic>Polyethylene glycol</topic><topic>Potassium fluoride</topic><topic>split bipolar electrode</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miyamoto, Kazuhiro</creatorcontrib><creatorcontrib>Nishiyama, Hiroki</creatorcontrib><creatorcontrib>Tomita, Ikuyoshi</creatorcontrib><creatorcontrib>Inagi, Shinsuke</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>ChemElectroChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miyamoto, Kazuhiro</au><au>Nishiyama, Hiroki</au><au>Tomita, Ikuyoshi</au><au>Inagi, Shinsuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a Split Bipolar Electrode System for Electrochemical Fluorination of Triphenylmethane</atitle><jtitle>ChemElectroChem</jtitle><date>2019-01-02</date><risdate>2019</risdate><volume>6</volume><issue>1</issue><spage>97</spage><epage>100</epage><pages>97-100</pages><issn>2196-0216</issn><eissn>2196-0216</eissn><abstract>To overcome the problem of electrochemical fluorination methods using a large amount of supporting electrolytes and fluorine sources, we employed a split bipolar electrode (s‐BPE) system, in which electrode reactions occur in a low concentration of supporting electrolyte and electricity is monitored. We optimized the electrochemical parameters for the s‐BPE system using a U‐shaped electrochemical cell and investigated the electrochemical fluorination of triphenylmethane as a model substrate in the presence of potassium fluoride (KF) or cesium fluoride (CsF) as a supporting electrolyte and a fluorine source dissolved by the help of poly(ethylene glycol) (PEG) additive. The fluorination of triphenylphoshine was also examined under the optimized conditions. Electrochemical fluorination of triphenylmethane is carried out using a low concentration (1 mM) of CsF on a split bipolar electrode (s‐BPE) system, in which currents and charges passed through the BPE could be monitored. Such an operation in low concentration of supporting electrolyte for organic electosynthesis is an ideal method in terms of waste reduction and easy separation process.</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/celc.201801216</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-9867-1210</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2196-0216
ispartof ChemElectroChem, 2019-01, Vol.6 (1), p.97-100
issn 2196-0216
2196-0216
language eng
recordid cdi_proquest_journals_2162444410
source Wiley Online Library Journals Frontfile Complete
subjects bipolar electrochemistry
Cesium
Cesium fluorides
Electrochemical cells
electrochemical fluorination
Electrodes
Electrolytes
Fluorides
Fluorination
Fluorine
metal fluoride
organofluorine compounds
Polyethylene glycol
Potassium fluoride
split bipolar electrode
Substrates
title Development of a Split Bipolar Electrode System for Electrochemical Fluorination of Triphenylmethane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T22%3A56%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20Split%20Bipolar%20Electrode%20System%20for%20Electrochemical%20Fluorination%20of%20Triphenylmethane&rft.jtitle=ChemElectroChem&rft.au=Miyamoto,%20Kazuhiro&rft.date=2019-01-02&rft.volume=6&rft.issue=1&rft.spage=97&rft.epage=100&rft.pages=97-100&rft.issn=2196-0216&rft.eissn=2196-0216&rft_id=info:doi/10.1002/celc.201801216&rft_dat=%3Cproquest_cross%3E2162444410%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2162444410&rft_id=info:pmid/&rfr_iscdi=true