Development of a Split Bipolar Electrode System for Electrochemical Fluorination of Triphenylmethane
To overcome the problem of electrochemical fluorination methods using a large amount of supporting electrolytes and fluorine sources, we employed a split bipolar electrode (s‐BPE) system, in which electrode reactions occur in a low concentration of supporting electrolyte and electricity is monitored...
Gespeichert in:
Veröffentlicht in: | ChemElectroChem 2019-01, Vol.6 (1), p.97-100 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 100 |
---|---|
container_issue | 1 |
container_start_page | 97 |
container_title | ChemElectroChem |
container_volume | 6 |
creator | Miyamoto, Kazuhiro Nishiyama, Hiroki Tomita, Ikuyoshi Inagi, Shinsuke |
description | To overcome the problem of electrochemical fluorination methods using a large amount of supporting electrolytes and fluorine sources, we employed a split bipolar electrode (s‐BPE) system, in which electrode reactions occur in a low concentration of supporting electrolyte and electricity is monitored. We optimized the electrochemical parameters for the s‐BPE system using a U‐shaped electrochemical cell and investigated the electrochemical fluorination of triphenylmethane as a model substrate in the presence of potassium fluoride (KF) or cesium fluoride (CsF) as a supporting electrolyte and a fluorine source dissolved by the help of poly(ethylene glycol) (PEG) additive. The fluorination of triphenylphoshine was also examined under the optimized conditions.
Electrochemical fluorination of triphenylmethane is carried out using a low concentration (1 mM) of CsF on a split bipolar electrode (s‐BPE) system, in which currents and charges passed through the BPE could be monitored. Such an operation in low concentration of supporting electrolyte for organic electosynthesis is an ideal method in terms of waste reduction and easy separation process. |
doi_str_mv | 10.1002/celc.201801216 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2162444410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2162444410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4206-61c2b5d12a1ca1e738a24e0bb3d87f6bd329c73e26599cf8d34f5ead97d0821f3</originalsourceid><addsrcrecordid>eNqFUE1LAzEQDaJgqb16DnjeOsl-H7W2KhQ8tJ5DNpnQlOxmzW6V_fduqVRvzmUew_tgHiG3DOYMgN8rdGrOgRXAOMsuyISzMotgxJd_8DWZdd0eABiDNC6yCdFP-InOtzU2PfWGSrppne3po229k4EuHao-eI10M3Q91tT481HtsLZKOrpyBx9sI3vrm6PJNth2h83gaux3ssEbcmWk63D2s6fkfbXcLl6i9dvz6-JhHamEQxZlTPEq1YxLpiTDPC4kTxCqKtZFbrJKx7xUeYw8S8tSmULHiUlR6jLXUHBm4im5O_m2wX8csOvF3h9CM0aK8XmejMNgZM1PLBV81wU0og22lmEQDMSxTHEsU5zLHAXlSfBlHQ7_sMViuV78ar8Bv9N5Yw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2162444410</pqid></control><display><type>article</type><title>Development of a Split Bipolar Electrode System for Electrochemical Fluorination of Triphenylmethane</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Miyamoto, Kazuhiro ; Nishiyama, Hiroki ; Tomita, Ikuyoshi ; Inagi, Shinsuke</creator><creatorcontrib>Miyamoto, Kazuhiro ; Nishiyama, Hiroki ; Tomita, Ikuyoshi ; Inagi, Shinsuke</creatorcontrib><description>To overcome the problem of electrochemical fluorination methods using a large amount of supporting electrolytes and fluorine sources, we employed a split bipolar electrode (s‐BPE) system, in which electrode reactions occur in a low concentration of supporting electrolyte and electricity is monitored. We optimized the electrochemical parameters for the s‐BPE system using a U‐shaped electrochemical cell and investigated the electrochemical fluorination of triphenylmethane as a model substrate in the presence of potassium fluoride (KF) or cesium fluoride (CsF) as a supporting electrolyte and a fluorine source dissolved by the help of poly(ethylene glycol) (PEG) additive. The fluorination of triphenylphoshine was also examined under the optimized conditions.
Electrochemical fluorination of triphenylmethane is carried out using a low concentration (1 mM) of CsF on a split bipolar electrode (s‐BPE) system, in which currents and charges passed through the BPE could be monitored. Such an operation in low concentration of supporting electrolyte for organic electosynthesis is an ideal method in terms of waste reduction and easy separation process.</description><identifier>ISSN: 2196-0216</identifier><identifier>EISSN: 2196-0216</identifier><identifier>DOI: 10.1002/celc.201801216</identifier><language>eng</language><publisher>Weinheim: John Wiley & Sons, Inc</publisher><subject>bipolar electrochemistry ; Cesium ; Cesium fluorides ; Electrochemical cells ; electrochemical fluorination ; Electrodes ; Electrolytes ; Fluorides ; Fluorination ; Fluorine ; metal fluoride ; organofluorine compounds ; Polyethylene glycol ; Potassium fluoride ; split bipolar electrode ; Substrates</subject><ispartof>ChemElectroChem, 2019-01, Vol.6 (1), p.97-100</ispartof><rights>2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4206-61c2b5d12a1ca1e738a24e0bb3d87f6bd329c73e26599cf8d34f5ead97d0821f3</citedby><cites>FETCH-LOGICAL-c4206-61c2b5d12a1ca1e738a24e0bb3d87f6bd329c73e26599cf8d34f5ead97d0821f3</cites><orcidid>0000-0002-9867-1210</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcelc.201801216$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcelc.201801216$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Miyamoto, Kazuhiro</creatorcontrib><creatorcontrib>Nishiyama, Hiroki</creatorcontrib><creatorcontrib>Tomita, Ikuyoshi</creatorcontrib><creatorcontrib>Inagi, Shinsuke</creatorcontrib><title>Development of a Split Bipolar Electrode System for Electrochemical Fluorination of Triphenylmethane</title><title>ChemElectroChem</title><description>To overcome the problem of electrochemical fluorination methods using a large amount of supporting electrolytes and fluorine sources, we employed a split bipolar electrode (s‐BPE) system, in which electrode reactions occur in a low concentration of supporting electrolyte and electricity is monitored. We optimized the electrochemical parameters for the s‐BPE system using a U‐shaped electrochemical cell and investigated the electrochemical fluorination of triphenylmethane as a model substrate in the presence of potassium fluoride (KF) or cesium fluoride (CsF) as a supporting electrolyte and a fluorine source dissolved by the help of poly(ethylene glycol) (PEG) additive. The fluorination of triphenylphoshine was also examined under the optimized conditions.
Electrochemical fluorination of triphenylmethane is carried out using a low concentration (1 mM) of CsF on a split bipolar electrode (s‐BPE) system, in which currents and charges passed through the BPE could be monitored. Such an operation in low concentration of supporting electrolyte for organic electosynthesis is an ideal method in terms of waste reduction and easy separation process.</description><subject>bipolar electrochemistry</subject><subject>Cesium</subject><subject>Cesium fluorides</subject><subject>Electrochemical cells</subject><subject>electrochemical fluorination</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Fluorides</subject><subject>Fluorination</subject><subject>Fluorine</subject><subject>metal fluoride</subject><subject>organofluorine compounds</subject><subject>Polyethylene glycol</subject><subject>Potassium fluoride</subject><subject>split bipolar electrode</subject><subject>Substrates</subject><issn>2196-0216</issn><issn>2196-0216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LAzEQDaJgqb16DnjeOsl-H7W2KhQ8tJ5DNpnQlOxmzW6V_fduqVRvzmUew_tgHiG3DOYMgN8rdGrOgRXAOMsuyISzMotgxJd_8DWZdd0eABiDNC6yCdFP-InOtzU2PfWGSrppne3po229k4EuHao-eI10M3Q91tT481HtsLZKOrpyBx9sI3vrm6PJNth2h83gaux3ssEbcmWk63D2s6fkfbXcLl6i9dvz6-JhHamEQxZlTPEq1YxLpiTDPC4kTxCqKtZFbrJKx7xUeYw8S8tSmULHiUlR6jLXUHBm4im5O_m2wX8csOvF3h9CM0aK8XmejMNgZM1PLBV81wU0og22lmEQDMSxTHEsU5zLHAXlSfBlHQ7_sMViuV78ar8Bv9N5Yw</recordid><startdate>20190102</startdate><enddate>20190102</enddate><creator>Miyamoto, Kazuhiro</creator><creator>Nishiyama, Hiroki</creator><creator>Tomita, Ikuyoshi</creator><creator>Inagi, Shinsuke</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-9867-1210</orcidid></search><sort><creationdate>20190102</creationdate><title>Development of a Split Bipolar Electrode System for Electrochemical Fluorination of Triphenylmethane</title><author>Miyamoto, Kazuhiro ; Nishiyama, Hiroki ; Tomita, Ikuyoshi ; Inagi, Shinsuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4206-61c2b5d12a1ca1e738a24e0bb3d87f6bd329c73e26599cf8d34f5ead97d0821f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>bipolar electrochemistry</topic><topic>Cesium</topic><topic>Cesium fluorides</topic><topic>Electrochemical cells</topic><topic>electrochemical fluorination</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Fluorides</topic><topic>Fluorination</topic><topic>Fluorine</topic><topic>metal fluoride</topic><topic>organofluorine compounds</topic><topic>Polyethylene glycol</topic><topic>Potassium fluoride</topic><topic>split bipolar electrode</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miyamoto, Kazuhiro</creatorcontrib><creatorcontrib>Nishiyama, Hiroki</creatorcontrib><creatorcontrib>Tomita, Ikuyoshi</creatorcontrib><creatorcontrib>Inagi, Shinsuke</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>ChemElectroChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miyamoto, Kazuhiro</au><au>Nishiyama, Hiroki</au><au>Tomita, Ikuyoshi</au><au>Inagi, Shinsuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a Split Bipolar Electrode System for Electrochemical Fluorination of Triphenylmethane</atitle><jtitle>ChemElectroChem</jtitle><date>2019-01-02</date><risdate>2019</risdate><volume>6</volume><issue>1</issue><spage>97</spage><epage>100</epage><pages>97-100</pages><issn>2196-0216</issn><eissn>2196-0216</eissn><abstract>To overcome the problem of electrochemical fluorination methods using a large amount of supporting electrolytes and fluorine sources, we employed a split bipolar electrode (s‐BPE) system, in which electrode reactions occur in a low concentration of supporting electrolyte and electricity is monitored. We optimized the electrochemical parameters for the s‐BPE system using a U‐shaped electrochemical cell and investigated the electrochemical fluorination of triphenylmethane as a model substrate in the presence of potassium fluoride (KF) or cesium fluoride (CsF) as a supporting electrolyte and a fluorine source dissolved by the help of poly(ethylene glycol) (PEG) additive. The fluorination of triphenylphoshine was also examined under the optimized conditions.
Electrochemical fluorination of triphenylmethane is carried out using a low concentration (1 mM) of CsF on a split bipolar electrode (s‐BPE) system, in which currents and charges passed through the BPE could be monitored. Such an operation in low concentration of supporting electrolyte for organic electosynthesis is an ideal method in terms of waste reduction and easy separation process.</abstract><cop>Weinheim</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/celc.201801216</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-9867-1210</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2196-0216 |
ispartof | ChemElectroChem, 2019-01, Vol.6 (1), p.97-100 |
issn | 2196-0216 2196-0216 |
language | eng |
recordid | cdi_proquest_journals_2162444410 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | bipolar electrochemistry Cesium Cesium fluorides Electrochemical cells electrochemical fluorination Electrodes Electrolytes Fluorides Fluorination Fluorine metal fluoride organofluorine compounds Polyethylene glycol Potassium fluoride split bipolar electrode Substrates |
title | Development of a Split Bipolar Electrode System for Electrochemical Fluorination of Triphenylmethane |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T22%3A56%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20Split%20Bipolar%20Electrode%20System%20for%20Electrochemical%20Fluorination%20of%20Triphenylmethane&rft.jtitle=ChemElectroChem&rft.au=Miyamoto,%20Kazuhiro&rft.date=2019-01-02&rft.volume=6&rft.issue=1&rft.spage=97&rft.epage=100&rft.pages=97-100&rft.issn=2196-0216&rft.eissn=2196-0216&rft_id=info:doi/10.1002/celc.201801216&rft_dat=%3Cproquest_cross%3E2162444410%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2162444410&rft_id=info:pmid/&rfr_iscdi=true |