BI1 alleviates cardiac microvascular ischemia‐reperfusion injury via modifying mitochondrial fission and inhibiting XO/ROS/F‐actin pathways
Pathogenesis of cardiac microvascular ischemia‐reperfusion (IR) injury is associated with excessive mitochondrial fission. However, the upstream mediator of mitochondrial fission remains obscure. Bax inhibitor 1 (BI1) is linked to multiple mitochondrial functions, and there have been no studies inve...
Gespeichert in:
Veröffentlicht in: | Journal of cellular physiology 2019-04, Vol.234 (4), p.5056-5069 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5069 |
---|---|
container_issue | 4 |
container_start_page | 5056 |
container_title | Journal of cellular physiology |
container_volume | 234 |
creator | Zhou, Hao Wang, Jin Hu, Shunying Zhu, Hong Toan, Sam Ren, Jun |
description | Pathogenesis of cardiac microvascular ischemia‐reperfusion (IR) injury is associated with excessive mitochondrial fission. However, the upstream mediator of mitochondrial fission remains obscure. Bax inhibitor 1 (BI1) is linked to multiple mitochondrial functions, and there have been no studies investigating the contribution of BI1 on mitochondrial fission in the setting of cardiac microvascular IR injury. This study was undertaken to establish the action of BI1 on the cardiac microvascular reperfusion injury and figure out whether BI1 sustained endothelial viability via inhibiting mitochondrial fission. Our observation indicated that BI1 was downregulated in reperfused hearts and overexpression of BI1 attenuated microvascular IR injury. Mechanistically, reperfusion injury elevated the levels of xanthine oxidase (XO), an effect that was followed by increased reactive oxygen species (ROS) production. Subsequently, oxidative stress mediated F‐actin depolymerization and the latter promoted mitochondrial fission. Aberrant fission caused mitochondrial dysfunction and ultimately activated mitochondrial apoptosis in cardiac microvascular endothelial cells. By comparison, BI1 overexpression repressed XO expression and thus neutralized ROS, interrupting F‐actin‐mediated mitochondrial fission. The inhibitory effect of BI1 on mitochondrial fission sustained endothelial viability, reversed endothelial barrier integrity, attenuated the microvascular inflammation response, and maintained microcirculation patency. Altogether, we conclude that BI1 is essential in maintaining mitochondrial homeostasis and alleviating cardiac microvascular IR injury. Deregulated BI1 via the XO/ROS/F‐actin pathways plays a causative role in the development of cardiac microvascular reperfusion injury.
We conclude that Bax inhibitor 1 (BI1) is essential in maintaining mitochondrial homeostasis and alleviating cardiac microvascular ischemia‐reperfusion injury. Deregulated BI1 via the xanthine oxidase/reactive oxygen species/F‐actin pathways plays a causative role in the development of cardiac microvascular reperfusion injury. |
doi_str_mv | 10.1002/jcp.27308 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2162387906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2162387906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4198-33772c05356d5248c2fe63d3653f967dfc4b866fec62d14a18ebeb657e0a8e0c3</originalsourceid><addsrcrecordid>eNp1kElOwzAUQC0EoqWw4ALIEisWaT0kTrKEilGVihgkdpHjgbrKhJ20yo4bwBk5CYYCO1aWvt9_X3oAHGI0xgiRyVI0YxJTlGyBIUZpHIQsIttg6P9wkEYhHoA955YIoTSldBcMKCIRCwkegrezawx5UaiV4a1yUHArDRewNMLWK-5EV3ALjRMLVRr-8fpuVaOs7pypK2iqZWd76FdhWUuje1M9-822Fou6ktbwAmrjvlFeSY8vTG7aL-hpPrmb308uvJALP4ENbxdr3rt9sKN54dTBzzsCjxfnD9OrYDa_vJ6ezgIR4jQJKI1jIlBEIyYjEiaCaMWopCyiOmWx1CLME8a0EoxIHHKcqFzlLIoV4olCgo7A8cbb2PqlU67NlnVnK38yI5gRmsQpYp462VA-hnNW6ayxpuS2zzDKvtJnPn32nd6zRz_GLi-V_CN_W3tgsgHWplD9_6bsZnq7UX4CBAuR1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2162387906</pqid></control><display><type>article</type><title>BI1 alleviates cardiac microvascular ischemia‐reperfusion injury via modifying mitochondrial fission and inhibiting XO/ROS/F‐actin pathways</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhou, Hao ; Wang, Jin ; Hu, Shunying ; Zhu, Hong ; Toan, Sam ; Ren, Jun</creator><creatorcontrib>Zhou, Hao ; Wang, Jin ; Hu, Shunying ; Zhu, Hong ; Toan, Sam ; Ren, Jun</creatorcontrib><description>Pathogenesis of cardiac microvascular ischemia‐reperfusion (IR) injury is associated with excessive mitochondrial fission. However, the upstream mediator of mitochondrial fission remains obscure. Bax inhibitor 1 (BI1) is linked to multiple mitochondrial functions, and there have been no studies investigating the contribution of BI1 on mitochondrial fission in the setting of cardiac microvascular IR injury. This study was undertaken to establish the action of BI1 on the cardiac microvascular reperfusion injury and figure out whether BI1 sustained endothelial viability via inhibiting mitochondrial fission. Our observation indicated that BI1 was downregulated in reperfused hearts and overexpression of BI1 attenuated microvascular IR injury. Mechanistically, reperfusion injury elevated the levels of xanthine oxidase (XO), an effect that was followed by increased reactive oxygen species (ROS) production. Subsequently, oxidative stress mediated F‐actin depolymerization and the latter promoted mitochondrial fission. Aberrant fission caused mitochondrial dysfunction and ultimately activated mitochondrial apoptosis in cardiac microvascular endothelial cells. By comparison, BI1 overexpression repressed XO expression and thus neutralized ROS, interrupting F‐actin‐mediated mitochondrial fission. The inhibitory effect of BI1 on mitochondrial fission sustained endothelial viability, reversed endothelial barrier integrity, attenuated the microvascular inflammation response, and maintained microcirculation patency. Altogether, we conclude that BI1 is essential in maintaining mitochondrial homeostasis and alleviating cardiac microvascular IR injury. Deregulated BI1 via the XO/ROS/F‐actin pathways plays a causative role in the development of cardiac microvascular reperfusion injury.
We conclude that Bax inhibitor 1 (BI1) is essential in maintaining mitochondrial homeostasis and alleviating cardiac microvascular ischemia‐reperfusion injury. Deregulated BI1 via the xanthine oxidase/reactive oxygen species/F‐actin pathways plays a causative role in the development of cardiac microvascular reperfusion injury.</description><identifier>ISSN: 0021-9541</identifier><identifier>EISSN: 1097-4652</identifier><identifier>DOI: 10.1002/jcp.27308</identifier><identifier>PMID: 30256421</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Actin ; Actins - metabolism ; Animals ; Apoptosis ; BI1 ; Cells, Cultured ; Depolymerization ; Deregulation ; Endothelial cells ; Fission ; F‐actin ; Heart ; Heart - physiopathology ; Homeostasis ; Injuries ; Ischemia ; Male ; Membrane Proteins - metabolism ; Mice ; Mice, Transgenic ; microvascular IR injury ; Microvasculature ; Mitochondria ; Mitochondria, Heart - metabolism ; Mitochondrial Dynamics - physiology ; mitochondrial fission ; Myocardial Ischemia - pathology ; Myocardial Reperfusion Injury - pathology ; Oxidative stress ; Oxidative Stress - physiology ; Pathogenesis ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Reperfusion ; Viability ; Xanthine oxidase ; Xanthine Oxidase - metabolism</subject><ispartof>Journal of cellular physiology, 2019-04, Vol.234 (4), p.5056-5069</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4198-33772c05356d5248c2fe63d3653f967dfc4b866fec62d14a18ebeb657e0a8e0c3</citedby><cites>FETCH-LOGICAL-c4198-33772c05356d5248c2fe63d3653f967dfc4b866fec62d14a18ebeb657e0a8e0c3</cites><orcidid>0000-0001-8138-7275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcp.27308$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcp.27308$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45552,45553</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30256421$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Hao</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Hu, Shunying</creatorcontrib><creatorcontrib>Zhu, Hong</creatorcontrib><creatorcontrib>Toan, Sam</creatorcontrib><creatorcontrib>Ren, Jun</creatorcontrib><title>BI1 alleviates cardiac microvascular ischemia‐reperfusion injury via modifying mitochondrial fission and inhibiting XO/ROS/F‐actin pathways</title><title>Journal of cellular physiology</title><addtitle>J Cell Physiol</addtitle><description>Pathogenesis of cardiac microvascular ischemia‐reperfusion (IR) injury is associated with excessive mitochondrial fission. However, the upstream mediator of mitochondrial fission remains obscure. Bax inhibitor 1 (BI1) is linked to multiple mitochondrial functions, and there have been no studies investigating the contribution of BI1 on mitochondrial fission in the setting of cardiac microvascular IR injury. This study was undertaken to establish the action of BI1 on the cardiac microvascular reperfusion injury and figure out whether BI1 sustained endothelial viability via inhibiting mitochondrial fission. Our observation indicated that BI1 was downregulated in reperfused hearts and overexpression of BI1 attenuated microvascular IR injury. Mechanistically, reperfusion injury elevated the levels of xanthine oxidase (XO), an effect that was followed by increased reactive oxygen species (ROS) production. Subsequently, oxidative stress mediated F‐actin depolymerization and the latter promoted mitochondrial fission. Aberrant fission caused mitochondrial dysfunction and ultimately activated mitochondrial apoptosis in cardiac microvascular endothelial cells. By comparison, BI1 overexpression repressed XO expression and thus neutralized ROS, interrupting F‐actin‐mediated mitochondrial fission. The inhibitory effect of BI1 on mitochondrial fission sustained endothelial viability, reversed endothelial barrier integrity, attenuated the microvascular inflammation response, and maintained microcirculation patency. Altogether, we conclude that BI1 is essential in maintaining mitochondrial homeostasis and alleviating cardiac microvascular IR injury. Deregulated BI1 via the XO/ROS/F‐actin pathways plays a causative role in the development of cardiac microvascular reperfusion injury.
We conclude that Bax inhibitor 1 (BI1) is essential in maintaining mitochondrial homeostasis and alleviating cardiac microvascular ischemia‐reperfusion injury. Deregulated BI1 via the xanthine oxidase/reactive oxygen species/F‐actin pathways plays a causative role in the development of cardiac microvascular reperfusion injury.</description><subject>Actin</subject><subject>Actins - metabolism</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>BI1</subject><subject>Cells, Cultured</subject><subject>Depolymerization</subject><subject>Deregulation</subject><subject>Endothelial cells</subject><subject>Fission</subject><subject>F‐actin</subject><subject>Heart</subject><subject>Heart - physiopathology</subject><subject>Homeostasis</subject><subject>Injuries</subject><subject>Ischemia</subject><subject>Male</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>microvascular IR injury</subject><subject>Microvasculature</subject><subject>Mitochondria</subject><subject>Mitochondria, Heart - metabolism</subject><subject>Mitochondrial Dynamics - physiology</subject><subject>mitochondrial fission</subject><subject>Myocardial Ischemia - pathology</subject><subject>Myocardial Reperfusion Injury - pathology</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - physiology</subject><subject>Pathogenesis</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Reperfusion</subject><subject>Viability</subject><subject>Xanthine oxidase</subject><subject>Xanthine Oxidase - metabolism</subject><issn>0021-9541</issn><issn>1097-4652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kElOwzAUQC0EoqWw4ALIEisWaT0kTrKEilGVihgkdpHjgbrKhJ20yo4bwBk5CYYCO1aWvt9_X3oAHGI0xgiRyVI0YxJTlGyBIUZpHIQsIttg6P9wkEYhHoA955YIoTSldBcMKCIRCwkegrezawx5UaiV4a1yUHArDRewNMLWK-5EV3ALjRMLVRr-8fpuVaOs7pypK2iqZWd76FdhWUuje1M9-822Fou6ktbwAmrjvlFeSY8vTG7aL-hpPrmb308uvJALP4ENbxdr3rt9sKN54dTBzzsCjxfnD9OrYDa_vJ6ezgIR4jQJKI1jIlBEIyYjEiaCaMWopCyiOmWx1CLME8a0EoxIHHKcqFzlLIoV4olCgo7A8cbb2PqlU67NlnVnK38yI5gRmsQpYp462VA-hnNW6ayxpuS2zzDKvtJnPn32nd6zRz_GLi-V_CN_W3tgsgHWplD9_6bsZnq7UX4CBAuR1g</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Zhou, Hao</creator><creator>Wang, Jin</creator><creator>Hu, Shunying</creator><creator>Zhu, Hong</creator><creator>Toan, Sam</creator><creator>Ren, Jun</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0001-8138-7275</orcidid></search><sort><creationdate>201904</creationdate><title>BI1 alleviates cardiac microvascular ischemia‐reperfusion injury via modifying mitochondrial fission and inhibiting XO/ROS/F‐actin pathways</title><author>Zhou, Hao ; Wang, Jin ; Hu, Shunying ; Zhu, Hong ; Toan, Sam ; Ren, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4198-33772c05356d5248c2fe63d3653f967dfc4b866fec62d14a18ebeb657e0a8e0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Actin</topic><topic>Actins - metabolism</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>BI1</topic><topic>Cells, Cultured</topic><topic>Depolymerization</topic><topic>Deregulation</topic><topic>Endothelial cells</topic><topic>Fission</topic><topic>F‐actin</topic><topic>Heart</topic><topic>Heart - physiopathology</topic><topic>Homeostasis</topic><topic>Injuries</topic><topic>Ischemia</topic><topic>Male</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>microvascular IR injury</topic><topic>Microvasculature</topic><topic>Mitochondria</topic><topic>Mitochondria, Heart - metabolism</topic><topic>Mitochondrial Dynamics - physiology</topic><topic>mitochondrial fission</topic><topic>Myocardial Ischemia - pathology</topic><topic>Myocardial Reperfusion Injury - pathology</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - physiology</topic><topic>Pathogenesis</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Reperfusion</topic><topic>Viability</topic><topic>Xanthine oxidase</topic><topic>Xanthine Oxidase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Hao</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Hu, Shunying</creatorcontrib><creatorcontrib>Zhu, Hong</creatorcontrib><creatorcontrib>Toan, Sam</creatorcontrib><creatorcontrib>Ren, Jun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of cellular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Hao</au><au>Wang, Jin</au><au>Hu, Shunying</au><au>Zhu, Hong</au><au>Toan, Sam</au><au>Ren, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BI1 alleviates cardiac microvascular ischemia‐reperfusion injury via modifying mitochondrial fission and inhibiting XO/ROS/F‐actin pathways</atitle><jtitle>Journal of cellular physiology</jtitle><addtitle>J Cell Physiol</addtitle><date>2019-04</date><risdate>2019</risdate><volume>234</volume><issue>4</issue><spage>5056</spage><epage>5069</epage><pages>5056-5069</pages><issn>0021-9541</issn><eissn>1097-4652</eissn><abstract>Pathogenesis of cardiac microvascular ischemia‐reperfusion (IR) injury is associated with excessive mitochondrial fission. However, the upstream mediator of mitochondrial fission remains obscure. Bax inhibitor 1 (BI1) is linked to multiple mitochondrial functions, and there have been no studies investigating the contribution of BI1 on mitochondrial fission in the setting of cardiac microvascular IR injury. This study was undertaken to establish the action of BI1 on the cardiac microvascular reperfusion injury and figure out whether BI1 sustained endothelial viability via inhibiting mitochondrial fission. Our observation indicated that BI1 was downregulated in reperfused hearts and overexpression of BI1 attenuated microvascular IR injury. Mechanistically, reperfusion injury elevated the levels of xanthine oxidase (XO), an effect that was followed by increased reactive oxygen species (ROS) production. Subsequently, oxidative stress mediated F‐actin depolymerization and the latter promoted mitochondrial fission. Aberrant fission caused mitochondrial dysfunction and ultimately activated mitochondrial apoptosis in cardiac microvascular endothelial cells. By comparison, BI1 overexpression repressed XO expression and thus neutralized ROS, interrupting F‐actin‐mediated mitochondrial fission. The inhibitory effect of BI1 on mitochondrial fission sustained endothelial viability, reversed endothelial barrier integrity, attenuated the microvascular inflammation response, and maintained microcirculation patency. Altogether, we conclude that BI1 is essential in maintaining mitochondrial homeostasis and alleviating cardiac microvascular IR injury. Deregulated BI1 via the XO/ROS/F‐actin pathways plays a causative role in the development of cardiac microvascular reperfusion injury.
We conclude that Bax inhibitor 1 (BI1) is essential in maintaining mitochondrial homeostasis and alleviating cardiac microvascular ischemia‐reperfusion injury. Deregulated BI1 via the xanthine oxidase/reactive oxygen species/F‐actin pathways plays a causative role in the development of cardiac microvascular reperfusion injury.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30256421</pmid><doi>10.1002/jcp.27308</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8138-7275</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9541 |
ispartof | Journal of cellular physiology, 2019-04, Vol.234 (4), p.5056-5069 |
issn | 0021-9541 1097-4652 |
language | eng |
recordid | cdi_proquest_journals_2162387906 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Actin Actins - metabolism Animals Apoptosis BI1 Cells, Cultured Depolymerization Deregulation Endothelial cells Fission F‐actin Heart Heart - physiopathology Homeostasis Injuries Ischemia Male Membrane Proteins - metabolism Mice Mice, Transgenic microvascular IR injury Microvasculature Mitochondria Mitochondria, Heart - metabolism Mitochondrial Dynamics - physiology mitochondrial fission Myocardial Ischemia - pathology Myocardial Reperfusion Injury - pathology Oxidative stress Oxidative Stress - physiology Pathogenesis Reactive oxygen species Reactive Oxygen Species - metabolism Reperfusion Viability Xanthine oxidase Xanthine Oxidase - metabolism |
title | BI1 alleviates cardiac microvascular ischemia‐reperfusion injury via modifying mitochondrial fission and inhibiting XO/ROS/F‐actin pathways |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T08%3A24%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BI1%20alleviates%20cardiac%20microvascular%20ischemia%E2%80%90reperfusion%20injury%20via%20modifying%20mitochondrial%20fission%20and%20inhibiting%20XO/ROS/F%E2%80%90actin%20pathways&rft.jtitle=Journal%20of%20cellular%20physiology&rft.au=Zhou,%20Hao&rft.date=2019-04&rft.volume=234&rft.issue=4&rft.spage=5056&rft.epage=5069&rft.pages=5056-5069&rft.issn=0021-9541&rft.eissn=1097-4652&rft_id=info:doi/10.1002/jcp.27308&rft_dat=%3Cproquest_cross%3E2162387906%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2162387906&rft_id=info:pmid/30256421&rfr_iscdi=true |