BI1 alleviates cardiac microvascular ischemia‐reperfusion injury via modifying mitochondrial fission and inhibiting XO/ROS/F‐actin pathways

Pathogenesis of cardiac microvascular ischemia‐reperfusion (IR) injury is associated with excessive mitochondrial fission. However, the upstream mediator of mitochondrial fission remains obscure. Bax inhibitor 1 (BI1) is linked to multiple mitochondrial functions, and there have been no studies inve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular physiology 2019-04, Vol.234 (4), p.5056-5069
Hauptverfasser: Zhou, Hao, Wang, Jin, Hu, Shunying, Zhu, Hong, Toan, Sam, Ren, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5069
container_issue 4
container_start_page 5056
container_title Journal of cellular physiology
container_volume 234
creator Zhou, Hao
Wang, Jin
Hu, Shunying
Zhu, Hong
Toan, Sam
Ren, Jun
description Pathogenesis of cardiac microvascular ischemia‐reperfusion (IR) injury is associated with excessive mitochondrial fission. However, the upstream mediator of mitochondrial fission remains obscure. Bax inhibitor 1 (BI1) is linked to multiple mitochondrial functions, and there have been no studies investigating the contribution of BI1 on mitochondrial fission in the setting of cardiac microvascular IR injury. This study was undertaken to establish the action of BI1 on the cardiac microvascular reperfusion injury and figure out whether BI1 sustained endothelial viability via inhibiting mitochondrial fission. Our observation indicated that BI1 was downregulated in reperfused hearts and overexpression of BI1 attenuated microvascular IR injury. Mechanistically, reperfusion injury elevated the levels of xanthine oxidase (XO), an effect that was followed by increased reactive oxygen species (ROS) production. Subsequently, oxidative stress mediated F‐actin depolymerization and the latter promoted mitochondrial fission. Aberrant fission caused mitochondrial dysfunction and ultimately activated mitochondrial apoptosis in cardiac microvascular endothelial cells. By comparison, BI1 overexpression repressed XO expression and thus neutralized ROS, interrupting F‐actin‐mediated mitochondrial fission. The inhibitory effect of BI1 on mitochondrial fission sustained endothelial viability, reversed endothelial barrier integrity, attenuated the microvascular inflammation response, and maintained microcirculation patency. Altogether, we conclude that BI1 is essential in maintaining mitochondrial homeostasis and alleviating cardiac microvascular IR injury. Deregulated BI1 via the XO/ROS/F‐actin pathways plays a causative role in the development of cardiac microvascular reperfusion injury. We conclude that Bax inhibitor 1 (BI1) is essential in maintaining mitochondrial homeostasis and alleviating cardiac microvascular ischemia‐reperfusion injury. Deregulated BI1 via the xanthine oxidase/reactive oxygen species/F‐actin pathways plays a causative role in the development of cardiac microvascular reperfusion injury.
doi_str_mv 10.1002/jcp.27308
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2162387906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2162387906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4198-33772c05356d5248c2fe63d3653f967dfc4b866fec62d14a18ebeb657e0a8e0c3</originalsourceid><addsrcrecordid>eNp1kElOwzAUQC0EoqWw4ALIEisWaT0kTrKEilGVihgkdpHjgbrKhJ20yo4bwBk5CYYCO1aWvt9_X3oAHGI0xgiRyVI0YxJTlGyBIUZpHIQsIttg6P9wkEYhHoA955YIoTSldBcMKCIRCwkegrezawx5UaiV4a1yUHArDRewNMLWK-5EV3ALjRMLVRr-8fpuVaOs7pypK2iqZWd76FdhWUuje1M9-822Fou6ktbwAmrjvlFeSY8vTG7aL-hpPrmb308uvJALP4ENbxdr3rt9sKN54dTBzzsCjxfnD9OrYDa_vJ6ezgIR4jQJKI1jIlBEIyYjEiaCaMWopCyiOmWx1CLME8a0EoxIHHKcqFzlLIoV4olCgo7A8cbb2PqlU67NlnVnK38yI5gRmsQpYp462VA-hnNW6ayxpuS2zzDKvtJnPn32nd6zRz_GLi-V_CN_W3tgsgHWplD9_6bsZnq7UX4CBAuR1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2162387906</pqid></control><display><type>article</type><title>BI1 alleviates cardiac microvascular ischemia‐reperfusion injury via modifying mitochondrial fission and inhibiting XO/ROS/F‐actin pathways</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhou, Hao ; Wang, Jin ; Hu, Shunying ; Zhu, Hong ; Toan, Sam ; Ren, Jun</creator><creatorcontrib>Zhou, Hao ; Wang, Jin ; Hu, Shunying ; Zhu, Hong ; Toan, Sam ; Ren, Jun</creatorcontrib><description>Pathogenesis of cardiac microvascular ischemia‐reperfusion (IR) injury is associated with excessive mitochondrial fission. However, the upstream mediator of mitochondrial fission remains obscure. Bax inhibitor 1 (BI1) is linked to multiple mitochondrial functions, and there have been no studies investigating the contribution of BI1 on mitochondrial fission in the setting of cardiac microvascular IR injury. This study was undertaken to establish the action of BI1 on the cardiac microvascular reperfusion injury and figure out whether BI1 sustained endothelial viability via inhibiting mitochondrial fission. Our observation indicated that BI1 was downregulated in reperfused hearts and overexpression of BI1 attenuated microvascular IR injury. Mechanistically, reperfusion injury elevated the levels of xanthine oxidase (XO), an effect that was followed by increased reactive oxygen species (ROS) production. Subsequently, oxidative stress mediated F‐actin depolymerization and the latter promoted mitochondrial fission. Aberrant fission caused mitochondrial dysfunction and ultimately activated mitochondrial apoptosis in cardiac microvascular endothelial cells. By comparison, BI1 overexpression repressed XO expression and thus neutralized ROS, interrupting F‐actin‐mediated mitochondrial fission. The inhibitory effect of BI1 on mitochondrial fission sustained endothelial viability, reversed endothelial barrier integrity, attenuated the microvascular inflammation response, and maintained microcirculation patency. Altogether, we conclude that BI1 is essential in maintaining mitochondrial homeostasis and alleviating cardiac microvascular IR injury. Deregulated BI1 via the XO/ROS/F‐actin pathways plays a causative role in the development of cardiac microvascular reperfusion injury. We conclude that Bax inhibitor 1 (BI1) is essential in maintaining mitochondrial homeostasis and alleviating cardiac microvascular ischemia‐reperfusion injury. Deregulated BI1 via the xanthine oxidase/reactive oxygen species/F‐actin pathways plays a causative role in the development of cardiac microvascular reperfusion injury.</description><identifier>ISSN: 0021-9541</identifier><identifier>EISSN: 1097-4652</identifier><identifier>DOI: 10.1002/jcp.27308</identifier><identifier>PMID: 30256421</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Actin ; Actins - metabolism ; Animals ; Apoptosis ; BI1 ; Cells, Cultured ; Depolymerization ; Deregulation ; Endothelial cells ; Fission ; F‐actin ; Heart ; Heart - physiopathology ; Homeostasis ; Injuries ; Ischemia ; Male ; Membrane Proteins - metabolism ; Mice ; Mice, Transgenic ; microvascular IR injury ; Microvasculature ; Mitochondria ; Mitochondria, Heart - metabolism ; Mitochondrial Dynamics - physiology ; mitochondrial fission ; Myocardial Ischemia - pathology ; Myocardial Reperfusion Injury - pathology ; Oxidative stress ; Oxidative Stress - physiology ; Pathogenesis ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Reperfusion ; Viability ; Xanthine oxidase ; Xanthine Oxidase - metabolism</subject><ispartof>Journal of cellular physiology, 2019-04, Vol.234 (4), p.5056-5069</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4198-33772c05356d5248c2fe63d3653f967dfc4b866fec62d14a18ebeb657e0a8e0c3</citedby><cites>FETCH-LOGICAL-c4198-33772c05356d5248c2fe63d3653f967dfc4b866fec62d14a18ebeb657e0a8e0c3</cites><orcidid>0000-0001-8138-7275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcp.27308$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcp.27308$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45552,45553</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30256421$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Hao</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Hu, Shunying</creatorcontrib><creatorcontrib>Zhu, Hong</creatorcontrib><creatorcontrib>Toan, Sam</creatorcontrib><creatorcontrib>Ren, Jun</creatorcontrib><title>BI1 alleviates cardiac microvascular ischemia‐reperfusion injury via modifying mitochondrial fission and inhibiting XO/ROS/F‐actin pathways</title><title>Journal of cellular physiology</title><addtitle>J Cell Physiol</addtitle><description>Pathogenesis of cardiac microvascular ischemia‐reperfusion (IR) injury is associated with excessive mitochondrial fission. However, the upstream mediator of mitochondrial fission remains obscure. Bax inhibitor 1 (BI1) is linked to multiple mitochondrial functions, and there have been no studies investigating the contribution of BI1 on mitochondrial fission in the setting of cardiac microvascular IR injury. This study was undertaken to establish the action of BI1 on the cardiac microvascular reperfusion injury and figure out whether BI1 sustained endothelial viability via inhibiting mitochondrial fission. Our observation indicated that BI1 was downregulated in reperfused hearts and overexpression of BI1 attenuated microvascular IR injury. Mechanistically, reperfusion injury elevated the levels of xanthine oxidase (XO), an effect that was followed by increased reactive oxygen species (ROS) production. Subsequently, oxidative stress mediated F‐actin depolymerization and the latter promoted mitochondrial fission. Aberrant fission caused mitochondrial dysfunction and ultimately activated mitochondrial apoptosis in cardiac microvascular endothelial cells. By comparison, BI1 overexpression repressed XO expression and thus neutralized ROS, interrupting F‐actin‐mediated mitochondrial fission. The inhibitory effect of BI1 on mitochondrial fission sustained endothelial viability, reversed endothelial barrier integrity, attenuated the microvascular inflammation response, and maintained microcirculation patency. Altogether, we conclude that BI1 is essential in maintaining mitochondrial homeostasis and alleviating cardiac microvascular IR injury. Deregulated BI1 via the XO/ROS/F‐actin pathways plays a causative role in the development of cardiac microvascular reperfusion injury. We conclude that Bax inhibitor 1 (BI1) is essential in maintaining mitochondrial homeostasis and alleviating cardiac microvascular ischemia‐reperfusion injury. Deregulated BI1 via the xanthine oxidase/reactive oxygen species/F‐actin pathways plays a causative role in the development of cardiac microvascular reperfusion injury.</description><subject>Actin</subject><subject>Actins - metabolism</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>BI1</subject><subject>Cells, Cultured</subject><subject>Depolymerization</subject><subject>Deregulation</subject><subject>Endothelial cells</subject><subject>Fission</subject><subject>F‐actin</subject><subject>Heart</subject><subject>Heart - physiopathology</subject><subject>Homeostasis</subject><subject>Injuries</subject><subject>Ischemia</subject><subject>Male</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>microvascular IR injury</subject><subject>Microvasculature</subject><subject>Mitochondria</subject><subject>Mitochondria, Heart - metabolism</subject><subject>Mitochondrial Dynamics - physiology</subject><subject>mitochondrial fission</subject><subject>Myocardial Ischemia - pathology</subject><subject>Myocardial Reperfusion Injury - pathology</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - physiology</subject><subject>Pathogenesis</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Reperfusion</subject><subject>Viability</subject><subject>Xanthine oxidase</subject><subject>Xanthine Oxidase - metabolism</subject><issn>0021-9541</issn><issn>1097-4652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kElOwzAUQC0EoqWw4ALIEisWaT0kTrKEilGVihgkdpHjgbrKhJ20yo4bwBk5CYYCO1aWvt9_X3oAHGI0xgiRyVI0YxJTlGyBIUZpHIQsIttg6P9wkEYhHoA955YIoTSldBcMKCIRCwkegrezawx5UaiV4a1yUHArDRewNMLWK-5EV3ALjRMLVRr-8fpuVaOs7pypK2iqZWd76FdhWUuje1M9-822Fou6ktbwAmrjvlFeSY8vTG7aL-hpPrmb308uvJALP4ENbxdr3rt9sKN54dTBzzsCjxfnD9OrYDa_vJ6ezgIR4jQJKI1jIlBEIyYjEiaCaMWopCyiOmWx1CLME8a0EoxIHHKcqFzlLIoV4olCgo7A8cbb2PqlU67NlnVnK38yI5gRmsQpYp462VA-hnNW6ayxpuS2zzDKvtJnPn32nd6zRz_GLi-V_CN_W3tgsgHWplD9_6bsZnq7UX4CBAuR1g</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Zhou, Hao</creator><creator>Wang, Jin</creator><creator>Hu, Shunying</creator><creator>Zhu, Hong</creator><creator>Toan, Sam</creator><creator>Ren, Jun</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0001-8138-7275</orcidid></search><sort><creationdate>201904</creationdate><title>BI1 alleviates cardiac microvascular ischemia‐reperfusion injury via modifying mitochondrial fission and inhibiting XO/ROS/F‐actin pathways</title><author>Zhou, Hao ; Wang, Jin ; Hu, Shunying ; Zhu, Hong ; Toan, Sam ; Ren, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4198-33772c05356d5248c2fe63d3653f967dfc4b866fec62d14a18ebeb657e0a8e0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Actin</topic><topic>Actins - metabolism</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>BI1</topic><topic>Cells, Cultured</topic><topic>Depolymerization</topic><topic>Deregulation</topic><topic>Endothelial cells</topic><topic>Fission</topic><topic>F‐actin</topic><topic>Heart</topic><topic>Heart - physiopathology</topic><topic>Homeostasis</topic><topic>Injuries</topic><topic>Ischemia</topic><topic>Male</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>microvascular IR injury</topic><topic>Microvasculature</topic><topic>Mitochondria</topic><topic>Mitochondria, Heart - metabolism</topic><topic>Mitochondrial Dynamics - physiology</topic><topic>mitochondrial fission</topic><topic>Myocardial Ischemia - pathology</topic><topic>Myocardial Reperfusion Injury - pathology</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - physiology</topic><topic>Pathogenesis</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Reperfusion</topic><topic>Viability</topic><topic>Xanthine oxidase</topic><topic>Xanthine Oxidase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Hao</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Hu, Shunying</creatorcontrib><creatorcontrib>Zhu, Hong</creatorcontrib><creatorcontrib>Toan, Sam</creatorcontrib><creatorcontrib>Ren, Jun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of cellular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Hao</au><au>Wang, Jin</au><au>Hu, Shunying</au><au>Zhu, Hong</au><au>Toan, Sam</au><au>Ren, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BI1 alleviates cardiac microvascular ischemia‐reperfusion injury via modifying mitochondrial fission and inhibiting XO/ROS/F‐actin pathways</atitle><jtitle>Journal of cellular physiology</jtitle><addtitle>J Cell Physiol</addtitle><date>2019-04</date><risdate>2019</risdate><volume>234</volume><issue>4</issue><spage>5056</spage><epage>5069</epage><pages>5056-5069</pages><issn>0021-9541</issn><eissn>1097-4652</eissn><abstract>Pathogenesis of cardiac microvascular ischemia‐reperfusion (IR) injury is associated with excessive mitochondrial fission. However, the upstream mediator of mitochondrial fission remains obscure. Bax inhibitor 1 (BI1) is linked to multiple mitochondrial functions, and there have been no studies investigating the contribution of BI1 on mitochondrial fission in the setting of cardiac microvascular IR injury. This study was undertaken to establish the action of BI1 on the cardiac microvascular reperfusion injury and figure out whether BI1 sustained endothelial viability via inhibiting mitochondrial fission. Our observation indicated that BI1 was downregulated in reperfused hearts and overexpression of BI1 attenuated microvascular IR injury. Mechanistically, reperfusion injury elevated the levels of xanthine oxidase (XO), an effect that was followed by increased reactive oxygen species (ROS) production. Subsequently, oxidative stress mediated F‐actin depolymerization and the latter promoted mitochondrial fission. Aberrant fission caused mitochondrial dysfunction and ultimately activated mitochondrial apoptosis in cardiac microvascular endothelial cells. By comparison, BI1 overexpression repressed XO expression and thus neutralized ROS, interrupting F‐actin‐mediated mitochondrial fission. The inhibitory effect of BI1 on mitochondrial fission sustained endothelial viability, reversed endothelial barrier integrity, attenuated the microvascular inflammation response, and maintained microcirculation patency. Altogether, we conclude that BI1 is essential in maintaining mitochondrial homeostasis and alleviating cardiac microvascular IR injury. Deregulated BI1 via the XO/ROS/F‐actin pathways plays a causative role in the development of cardiac microvascular reperfusion injury. We conclude that Bax inhibitor 1 (BI1) is essential in maintaining mitochondrial homeostasis and alleviating cardiac microvascular ischemia‐reperfusion injury. Deregulated BI1 via the xanthine oxidase/reactive oxygen species/F‐actin pathways plays a causative role in the development of cardiac microvascular reperfusion injury.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30256421</pmid><doi>10.1002/jcp.27308</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8138-7275</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9541
ispartof Journal of cellular physiology, 2019-04, Vol.234 (4), p.5056-5069
issn 0021-9541
1097-4652
language eng
recordid cdi_proquest_journals_2162387906
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Actin
Actins - metabolism
Animals
Apoptosis
BI1
Cells, Cultured
Depolymerization
Deregulation
Endothelial cells
Fission
F‐actin
Heart
Heart - physiopathology
Homeostasis
Injuries
Ischemia
Male
Membrane Proteins - metabolism
Mice
Mice, Transgenic
microvascular IR injury
Microvasculature
Mitochondria
Mitochondria, Heart - metabolism
Mitochondrial Dynamics - physiology
mitochondrial fission
Myocardial Ischemia - pathology
Myocardial Reperfusion Injury - pathology
Oxidative stress
Oxidative Stress - physiology
Pathogenesis
Reactive oxygen species
Reactive Oxygen Species - metabolism
Reperfusion
Viability
Xanthine oxidase
Xanthine Oxidase - metabolism
title BI1 alleviates cardiac microvascular ischemia‐reperfusion injury via modifying mitochondrial fission and inhibiting XO/ROS/F‐actin pathways
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T08%3A24%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BI1%20alleviates%20cardiac%20microvascular%20ischemia%E2%80%90reperfusion%20injury%20via%20modifying%20mitochondrial%20fission%20and%20inhibiting%20XO/ROS/F%E2%80%90actin%20pathways&rft.jtitle=Journal%20of%20cellular%20physiology&rft.au=Zhou,%20Hao&rft.date=2019-04&rft.volume=234&rft.issue=4&rft.spage=5056&rft.epage=5069&rft.pages=5056-5069&rft.issn=0021-9541&rft.eissn=1097-4652&rft_id=info:doi/10.1002/jcp.27308&rft_dat=%3Cproquest_cross%3E2162387906%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2162387906&rft_id=info:pmid/30256421&rfr_iscdi=true