The Hochschild cohomology of the group \(G^2_3\)

We apply discrete algebraic Morse theory to calculate the Anick resolution of the group algebra of the group \(G_3^2\). As a corollary, we evaluate Hochschild cohomologies of \(G_3^2\) with coefficients in all 1-dimensional bimodules. Almost all these groups are trivial, the only exceptions are 1-di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-12
Hauptverfasser: AlHussein, Hassan, Kolesnikov, Pavel
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We apply discrete algebraic Morse theory to calculate the Anick resolution of the group algebra of the group \(G_3^2\). As a corollary, we evaluate Hochschild cohomologies of \(G_3^2\) with coefficients in all 1-dimensional bimodules. Almost all these groups are trivial, the only exceptions are 1-dimensional \(H^2\) for two particular 1-dimensional bimodules.
ISSN:2331-8422