Elimination Theory for Solvable Polynomial Algebras and Their Free Modules
Let \(K\) be a field, and \(A=K[a_1,\ldots ,a_n]\) a solvable polynomial algebra in the sense of [K-RW, {\it J. Symbolic Comput.}, 9(1990), 1--26]. Based on the Gr\"obner basis theory for \(A\) and for free modules over \(A\), an elimination theory for left ideals of \(A\) and an elimination th...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-01 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Li, Huishi |
description | Let \(K\) be a field, and \(A=K[a_1,\ldots ,a_n]\) a solvable polynomial algebra in the sense of [K-RW, {\it J. Symbolic Comput.}, 9(1990), 1--26]. Based on the Gr\"obner basis theory for \(A\) and for free modules over \(A\), an elimination theory for left ideals of \(A\) and an elimination theory for submodules of free \(A\)-modules are established. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2162262351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2162262351</sourcerecordid><originalsourceid>FETCH-proquest_journals_21622623513</originalsourceid><addsrcrecordid>eNqNysEKgkAQgOElCJLyHQY6Czqb1jVCiSAI8i4rrrUy7tSuBr59BT1Ap__wfzMRoJRJtNsgLkTofRfHMWZbTFMZiFNOpjdWDYYtlHfNboKWHVyZXqomDRemyXJvFMGebrp2yoOyzdcaB4XTGs7cjKT9SsxbRV6Hvy7FusjLwzF6OH6O2g9Vx6Ozn1VhkiFmKNNE_qfetXs8bQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2162262351</pqid></control><display><type>article</type><title>Elimination Theory for Solvable Polynomial Algebras and Their Free Modules</title><source>Open Access: Freely Accessible Journals by multiple vendors</source><creator>Li, Huishi</creator><creatorcontrib>Li, Huishi</creatorcontrib><description>Let \(K\) be a field, and \(A=K[a_1,\ldots ,a_n]\) a solvable polynomial algebra in the sense of [K-RW, {\it J. Symbolic Comput.}, 9(1990), 1--26]. Based on the Gr\"obner basis theory for \(A\) and for free modules over \(A\), an elimination theory for left ideals of \(A\) and an elimination theory for submodules of free \(A\)-modules are established.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Modules ; Polynomials</subject><ispartof>arXiv.org, 2019-01</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Li, Huishi</creatorcontrib><title>Elimination Theory for Solvable Polynomial Algebras and Their Free Modules</title><title>arXiv.org</title><description>Let \(K\) be a field, and \(A=K[a_1,\ldots ,a_n]\) a solvable polynomial algebra in the sense of [K-RW, {\it J. Symbolic Comput.}, 9(1990), 1--26]. Based on the Gr\"obner basis theory for \(A\) and for free modules over \(A\), an elimination theory for left ideals of \(A\) and an elimination theory for submodules of free \(A\)-modules are established.</description><subject>Modules</subject><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNysEKgkAQgOElCJLyHQY6Czqb1jVCiSAI8i4rrrUy7tSuBr59BT1Ap__wfzMRoJRJtNsgLkTofRfHMWZbTFMZiFNOpjdWDYYtlHfNboKWHVyZXqomDRemyXJvFMGebrp2yoOyzdcaB4XTGs7cjKT9SsxbRV6Hvy7FusjLwzF6OH6O2g9Vx6Ozn1VhkiFmKNNE_qfetXs8bQ</recordid><startdate>20190114</startdate><enddate>20190114</enddate><creator>Li, Huishi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190114</creationdate><title>Elimination Theory for Solvable Polynomial Algebras and Their Free Modules</title><author>Li, Huishi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21622623513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Modules</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Huishi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Huishi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Elimination Theory for Solvable Polynomial Algebras and Their Free Modules</atitle><jtitle>arXiv.org</jtitle><date>2019-01-14</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Let \(K\) be a field, and \(A=K[a_1,\ldots ,a_n]\) a solvable polynomial algebra in the sense of [K-RW, {\it J. Symbolic Comput.}, 9(1990), 1--26]. Based on the Gr\"obner basis theory for \(A\) and for free modules over \(A\), an elimination theory for left ideals of \(A\) and an elimination theory for submodules of free \(A\)-modules are established.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2162262351 |
source | Open Access: Freely Accessible Journals by multiple vendors |
subjects | Modules Polynomials |
title | Elimination Theory for Solvable Polynomial Algebras and Their Free Modules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A03%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Elimination%20Theory%20for%20Solvable%20Polynomial%20Algebras%20and%20Their%20Free%20Modules&rft.jtitle=arXiv.org&rft.au=Li,%20Huishi&rft.date=2019-01-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2162262351%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2162262351&rft_id=info:pmid/&rfr_iscdi=true |