Elimination Theory for Solvable Polynomial Algebras and Their Free Modules

Let \(K\) be a field, and \(A=K[a_1,\ldots ,a_n]\) a solvable polynomial algebra in the sense of [K-RW, {\it J. Symbolic Comput.}, 9(1990), 1--26]. Based on the Gr\"obner basis theory for \(A\) and for free modules over \(A\), an elimination theory for left ideals of \(A\) and an elimination th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-01
1. Verfasser: Li, Huishi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Li, Huishi
description Let \(K\) be a field, and \(A=K[a_1,\ldots ,a_n]\) a solvable polynomial algebra in the sense of [K-RW, {\it J. Symbolic Comput.}, 9(1990), 1--26]. Based on the Gr\"obner basis theory for \(A\) and for free modules over \(A\), an elimination theory for left ideals of \(A\) and an elimination theory for submodules of free \(A\)-modules are established.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2162262351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2162262351</sourcerecordid><originalsourceid>FETCH-proquest_journals_21622623513</originalsourceid><addsrcrecordid>eNqNysEKgkAQgOElCJLyHQY6Czqb1jVCiSAI8i4rrrUy7tSuBr59BT1Ap__wfzMRoJRJtNsgLkTofRfHMWZbTFMZiFNOpjdWDYYtlHfNboKWHVyZXqomDRemyXJvFMGebrp2yoOyzdcaB4XTGs7cjKT9SsxbRV6Hvy7FusjLwzF6OH6O2g9Vx6Ozn1VhkiFmKNNE_qfetXs8bQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2162262351</pqid></control><display><type>article</type><title>Elimination Theory for Solvable Polynomial Algebras and Their Free Modules</title><source>Open Access: Freely Accessible Journals by multiple vendors</source><creator>Li, Huishi</creator><creatorcontrib>Li, Huishi</creatorcontrib><description>Let \(K\) be a field, and \(A=K[a_1,\ldots ,a_n]\) a solvable polynomial algebra in the sense of [K-RW, {\it J. Symbolic Comput.}, 9(1990), 1--26]. Based on the Gr\"obner basis theory for \(A\) and for free modules over \(A\), an elimination theory for left ideals of \(A\) and an elimination theory for submodules of free \(A\)-modules are established.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Modules ; Polynomials</subject><ispartof>arXiv.org, 2019-01</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Li, Huishi</creatorcontrib><title>Elimination Theory for Solvable Polynomial Algebras and Their Free Modules</title><title>arXiv.org</title><description>Let \(K\) be a field, and \(A=K[a_1,\ldots ,a_n]\) a solvable polynomial algebra in the sense of [K-RW, {\it J. Symbolic Comput.}, 9(1990), 1--26]. Based on the Gr\"obner basis theory for \(A\) and for free modules over \(A\), an elimination theory for left ideals of \(A\) and an elimination theory for submodules of free \(A\)-modules are established.</description><subject>Modules</subject><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNysEKgkAQgOElCJLyHQY6Czqb1jVCiSAI8i4rrrUy7tSuBr59BT1Ap__wfzMRoJRJtNsgLkTofRfHMWZbTFMZiFNOpjdWDYYtlHfNboKWHVyZXqomDRemyXJvFMGebrp2yoOyzdcaB4XTGs7cjKT9SsxbRV6Hvy7FusjLwzF6OH6O2g9Vx6Ozn1VhkiFmKNNE_qfetXs8bQ</recordid><startdate>20190114</startdate><enddate>20190114</enddate><creator>Li, Huishi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190114</creationdate><title>Elimination Theory for Solvable Polynomial Algebras and Their Free Modules</title><author>Li, Huishi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21622623513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Modules</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Huishi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Huishi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Elimination Theory for Solvable Polynomial Algebras and Their Free Modules</atitle><jtitle>arXiv.org</jtitle><date>2019-01-14</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Let \(K\) be a field, and \(A=K[a_1,\ldots ,a_n]\) a solvable polynomial algebra in the sense of [K-RW, {\it J. Symbolic Comput.}, 9(1990), 1--26]. Based on the Gr\"obner basis theory for \(A\) and for free modules over \(A\), an elimination theory for left ideals of \(A\) and an elimination theory for submodules of free \(A\)-modules are established.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2162262351
source Open Access: Freely Accessible Journals by multiple vendors
subjects Modules
Polynomials
title Elimination Theory for Solvable Polynomial Algebras and Their Free Modules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A03%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Elimination%20Theory%20for%20Solvable%20Polynomial%20Algebras%20and%20Their%20Free%20Modules&rft.jtitle=arXiv.org&rft.au=Li,%20Huishi&rft.date=2019-01-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2162262351%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2162262351&rft_id=info:pmid/&rfr_iscdi=true