Bias-Correction of Regression Models: A Case Study on hERG Inhibition
In the present work we develop a predictive QSAR model for the blockade of the hERG channel. Additionally, this specific end point is used as a test scenario to develop and evaluate several techniques for fusing predictions from multiple regression models. hERG inhibition models which are presented...
Gespeichert in:
Veröffentlicht in: | Journal of Chemical Information and Modeling 2009-06, Vol.49 (6), p.1486-1496 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1496 |
---|---|
container_issue | 6 |
container_start_page | 1486 |
container_title | Journal of Chemical Information and Modeling |
container_volume | 49 |
creator | Hansen, Katja Rathke, Fabian Schroeter, Timon Rast, Georg Fox, Thomas Kriegl, Jan M Mika, Sebastian |
description | In the present work we develop a predictive QSAR model for the blockade of the hERG channel. Additionally, this specific end point is used as a test scenario to develop and evaluate several techniques for fusing predictions from multiple regression models. hERG inhibition models which are presented here are based on a combined data set of roughly 550 proprietary and 110 public domain compounds. Models are built using various statistical learning techniques and different sets of molecular descriptors. Single Support Vector Regression, Gaussian Process, or Random Forest models achieve root mean-squared errors of roughly 0.6 log units as determined from leave-group-out cross-validation. An analysis of the evaluation strategy on the performance estimates shows that standard leave-group-out cross-validation yields overly optimistic results. As an alternative, a clustered cross-validation scheme is introduced to obtain a more realistic estimate of the model performance. The evaluation of several techniques to combine multiple prediction models shows that the root mean squared error as determined from clustered cross-validation can be reduced from 0.73 ± 0.01 to 0.57 ± 0.01 using a local bias correction strategy. |
doi_str_mv | 10.1021/ci9000794 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_216221616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1760243161</sourcerecordid><originalsourceid>FETCH-LOGICAL-a365t-39edc241afd91128f11d185c2e54635f2ba895a61999ad13e2831cc509bdf0e73</originalsourceid><addsrcrecordid>eNplkEtLAzEUhYMotlYX_gEJggsXo7nJJJ24q0OthYpQdT1k8rBT2qYmM4v-e2dosQsXl_vgu-fAQegayAMQCo-6koSQoUxPUB84JQmHlJ52cyoTyaXooYsYl4QwJgU9Rz2QKeOMij4aP1cqJrkPweq68hvsHZ7b72Bj7LY3b-wqPuERzlW0-KNuzA6398V4PsHTzaIqq-7rEp05tYr26tAH6Otl_Jm_JrP3yTQfzRLFBK8TJq3RNAXljASgmQMwkHFNLU8F446WKpNcCZBSKgPM0oyB1pzI0jhih2yAbve62-B_GhvrYumbsGktCwqCtgWihe73kA4-xmBdsQ3VWoVdAaTo8ir-8mrZm4NgU66tOZKHgFrgbg8oHY9m_4V-Abz0bkk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216221616</pqid></control><display><type>article</type><title>Bias-Correction of Regression Models: A Case Study on hERG Inhibition</title><source>ACS Publications</source><source>MEDLINE</source><creator>Hansen, Katja ; Rathke, Fabian ; Schroeter, Timon ; Rast, Georg ; Fox, Thomas ; Kriegl, Jan M ; Mika, Sebastian</creator><creatorcontrib>Hansen, Katja ; Rathke, Fabian ; Schroeter, Timon ; Rast, Georg ; Fox, Thomas ; Kriegl, Jan M ; Mika, Sebastian</creatorcontrib><description>In the present work we develop a predictive QSAR model for the blockade of the hERG channel. Additionally, this specific end point is used as a test scenario to develop and evaluate several techniques for fusing predictions from multiple regression models. hERG inhibition models which are presented here are based on a combined data set of roughly 550 proprietary and 110 public domain compounds. Models are built using various statistical learning techniques and different sets of molecular descriptors. Single Support Vector Regression, Gaussian Process, or Random Forest models achieve root mean-squared errors of roughly 0.6 log units as determined from leave-group-out cross-validation. An analysis of the evaluation strategy on the performance estimates shows that standard leave-group-out cross-validation yields overly optimistic results. As an alternative, a clustered cross-validation scheme is introduced to obtain a more realistic estimate of the model performance. The evaluation of several techniques to combine multiple prediction models shows that the root mean squared error as determined from clustered cross-validation can be reduced from 0.73 ± 0.01 to 0.57 ± 0.01 using a local bias correction strategy.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1520-5142</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/ci9000794</identifier><identifier>PMID: 19435326</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Analytical chemistry ; Computational Chemistry ; Drug Evaluation, Preclinical ; Ether-A-Go-Go Potassium Channels - antagonists & inhibitors ; Humans ; Inhibitory Concentration 50 ; Mathematical models ; Mean square errors ; Molecular structure ; Neural Networks (Computer) ; Performance evaluation ; Potassium Channel Blockers - chemistry ; Potassium Channel Blockers - pharmacology ; Quantitative Structure-Activity Relationship ; Regression Analysis ; Reproducibility of Results</subject><ispartof>Journal of Chemical Information and Modeling, 2009-06, Vol.49 (6), p.1486-1496</ispartof><rights>Copyright © 2009 American Chemical Society</rights><rights>Copyright American Chemical Society Jun 22, 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a365t-39edc241afd91128f11d185c2e54635f2ba895a61999ad13e2831cc509bdf0e73</citedby><cites>FETCH-LOGICAL-a365t-39edc241afd91128f11d185c2e54635f2ba895a61999ad13e2831cc509bdf0e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ci9000794$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ci9000794$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19435326$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hansen, Katja</creatorcontrib><creatorcontrib>Rathke, Fabian</creatorcontrib><creatorcontrib>Schroeter, Timon</creatorcontrib><creatorcontrib>Rast, Georg</creatorcontrib><creatorcontrib>Fox, Thomas</creatorcontrib><creatorcontrib>Kriegl, Jan M</creatorcontrib><creatorcontrib>Mika, Sebastian</creatorcontrib><title>Bias-Correction of Regression Models: A Case Study on hERG Inhibition</title><title>Journal of Chemical Information and Modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>In the present work we develop a predictive QSAR model for the blockade of the hERG channel. Additionally, this specific end point is used as a test scenario to develop and evaluate several techniques for fusing predictions from multiple regression models. hERG inhibition models which are presented here are based on a combined data set of roughly 550 proprietary and 110 public domain compounds. Models are built using various statistical learning techniques and different sets of molecular descriptors. Single Support Vector Regression, Gaussian Process, or Random Forest models achieve root mean-squared errors of roughly 0.6 log units as determined from leave-group-out cross-validation. An analysis of the evaluation strategy on the performance estimates shows that standard leave-group-out cross-validation yields overly optimistic results. As an alternative, a clustered cross-validation scheme is introduced to obtain a more realistic estimate of the model performance. The evaluation of several techniques to combine multiple prediction models shows that the root mean squared error as determined from clustered cross-validation can be reduced from 0.73 ± 0.01 to 0.57 ± 0.01 using a local bias correction strategy.</description><subject>Analytical chemistry</subject><subject>Computational Chemistry</subject><subject>Drug Evaluation, Preclinical</subject><subject>Ether-A-Go-Go Potassium Channels - antagonists & inhibitors</subject><subject>Humans</subject><subject>Inhibitory Concentration 50</subject><subject>Mathematical models</subject><subject>Mean square errors</subject><subject>Molecular structure</subject><subject>Neural Networks (Computer)</subject><subject>Performance evaluation</subject><subject>Potassium Channel Blockers - chemistry</subject><subject>Potassium Channel Blockers - pharmacology</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>Regression Analysis</subject><subject>Reproducibility of Results</subject><issn>1549-9596</issn><issn>1520-5142</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNplkEtLAzEUhYMotlYX_gEJggsXo7nJJJ24q0OthYpQdT1k8rBT2qYmM4v-e2dosQsXl_vgu-fAQegayAMQCo-6koSQoUxPUB84JQmHlJ52cyoTyaXooYsYl4QwJgU9Rz2QKeOMij4aP1cqJrkPweq68hvsHZ7b72Bj7LY3b-wqPuERzlW0-KNuzA6398V4PsHTzaIqq-7rEp05tYr26tAH6Otl_Jm_JrP3yTQfzRLFBK8TJq3RNAXljASgmQMwkHFNLU8F446WKpNcCZBSKgPM0oyB1pzI0jhih2yAbve62-B_GhvrYumbsGktCwqCtgWihe73kA4-xmBdsQ3VWoVdAaTo8ir-8mrZm4NgU66tOZKHgFrgbg8oHY9m_4V-Abz0bkk</recordid><startdate>20090622</startdate><enddate>20090622</enddate><creator>Hansen, Katja</creator><creator>Rathke, Fabian</creator><creator>Schroeter, Timon</creator><creator>Rast, Georg</creator><creator>Fox, Thomas</creator><creator>Kriegl, Jan M</creator><creator>Mika, Sebastian</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090622</creationdate><title>Bias-Correction of Regression Models: A Case Study on hERG Inhibition</title><author>Hansen, Katja ; Rathke, Fabian ; Schroeter, Timon ; Rast, Georg ; Fox, Thomas ; Kriegl, Jan M ; Mika, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a365t-39edc241afd91128f11d185c2e54635f2ba895a61999ad13e2831cc509bdf0e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Analytical chemistry</topic><topic>Computational Chemistry</topic><topic>Drug Evaluation, Preclinical</topic><topic>Ether-A-Go-Go Potassium Channels - antagonists & inhibitors</topic><topic>Humans</topic><topic>Inhibitory Concentration 50</topic><topic>Mathematical models</topic><topic>Mean square errors</topic><topic>Molecular structure</topic><topic>Neural Networks (Computer)</topic><topic>Performance evaluation</topic><topic>Potassium Channel Blockers - chemistry</topic><topic>Potassium Channel Blockers - pharmacology</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>Regression Analysis</topic><topic>Reproducibility of Results</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hansen, Katja</creatorcontrib><creatorcontrib>Rathke, Fabian</creatorcontrib><creatorcontrib>Schroeter, Timon</creatorcontrib><creatorcontrib>Rast, Georg</creatorcontrib><creatorcontrib>Fox, Thomas</creatorcontrib><creatorcontrib>Kriegl, Jan M</creatorcontrib><creatorcontrib>Mika, Sebastian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of Chemical Information and Modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hansen, Katja</au><au>Rathke, Fabian</au><au>Schroeter, Timon</au><au>Rast, Georg</au><au>Fox, Thomas</au><au>Kriegl, Jan M</au><au>Mika, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bias-Correction of Regression Models: A Case Study on hERG Inhibition</atitle><jtitle>Journal of Chemical Information and Modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2009-06-22</date><risdate>2009</risdate><volume>49</volume><issue>6</issue><spage>1486</spage><epage>1496</epage><pages>1486-1496</pages><issn>1549-9596</issn><eissn>1520-5142</eissn><eissn>1549-960X</eissn><abstract>In the present work we develop a predictive QSAR model for the blockade of the hERG channel. Additionally, this specific end point is used as a test scenario to develop and evaluate several techniques for fusing predictions from multiple regression models. hERG inhibition models which are presented here are based on a combined data set of roughly 550 proprietary and 110 public domain compounds. Models are built using various statistical learning techniques and different sets of molecular descriptors. Single Support Vector Regression, Gaussian Process, or Random Forest models achieve root mean-squared errors of roughly 0.6 log units as determined from leave-group-out cross-validation. An analysis of the evaluation strategy on the performance estimates shows that standard leave-group-out cross-validation yields overly optimistic results. As an alternative, a clustered cross-validation scheme is introduced to obtain a more realistic estimate of the model performance. The evaluation of several techniques to combine multiple prediction models shows that the root mean squared error as determined from clustered cross-validation can be reduced from 0.73 ± 0.01 to 0.57 ± 0.01 using a local bias correction strategy.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>19435326</pmid><doi>10.1021/ci9000794</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9596 |
ispartof | Journal of Chemical Information and Modeling, 2009-06, Vol.49 (6), p.1486-1496 |
issn | 1549-9596 1520-5142 1549-960X |
language | eng |
recordid | cdi_proquest_journals_216221616 |
source | ACS Publications; MEDLINE |
subjects | Analytical chemistry Computational Chemistry Drug Evaluation, Preclinical Ether-A-Go-Go Potassium Channels - antagonists & inhibitors Humans Inhibitory Concentration 50 Mathematical models Mean square errors Molecular structure Neural Networks (Computer) Performance evaluation Potassium Channel Blockers - chemistry Potassium Channel Blockers - pharmacology Quantitative Structure-Activity Relationship Regression Analysis Reproducibility of Results |
title | Bias-Correction of Regression Models: A Case Study on hERG Inhibition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A30%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bias-Correction%20of%20Regression%20Models:%20A%20Case%20Study%20on%20hERG%20Inhibition&rft.jtitle=Journal%20of%20Chemical%20Information%20and%20Modeling&rft.au=Hansen,%20Katja&rft.date=2009-06-22&rft.volume=49&rft.issue=6&rft.spage=1486&rft.epage=1496&rft.pages=1486-1496&rft.issn=1549-9596&rft.eissn=1520-5142&rft_id=info:doi/10.1021/ci9000794&rft_dat=%3Cproquest_cross%3E1760243161%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=216221616&rft_id=info:pmid/19435326&rfr_iscdi=true |