Median constrained bucket order rank aggregation

The rank aggregation problem can be summarized as the problem of aggregating individual preferences expressed by a set of judges to obtain a ranking that represents the best synthesis of their choices. Several approaches for handling this problem have been proposed and are generally linked with eith...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics 2019-06, Vol.34 (2), p.787-802
Hauptverfasser: D’Ambrosio, Antonio, Iorio, Carmela, Staiano, Michele, Siciliano, Roberta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 802
container_issue 2
container_start_page 787
container_title Computational statistics
container_volume 34
creator D’Ambrosio, Antonio
Iorio, Carmela
Staiano, Michele
Siciliano, Roberta
description The rank aggregation problem can be summarized as the problem of aggregating individual preferences expressed by a set of judges to obtain a ranking that represents the best synthesis of their choices. Several approaches for handling this problem have been proposed and are generally linked with either axiomatic frameworks or alternative strategies. In this paper, we present a new definition of median ranking and frame it within the Kemeny’s axiomatic framework. Moreover, we show the usefulness of our approach in a practical case about triage prioritization.
doi_str_mv 10.1007/s00180-018-0858-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2161851188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2161851188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-3246ff517c2fa5b6399cb1d5671a986fdb83447881fbe5f650064fa6e76f7a9b3</originalsourceid><addsrcrecordid>eNp1kDtPxDAQhC0EEsfBD6CLRG3YteNXiU68JBAN1JaT2FHuwDnsXMH9enwKEhXNTDPfrHYIuUS4RgB1kwFQAy1CQQtN90dkgRI5NVLoY7IAU3Nag2Sn5CznNQBjiuGCwIvvBherdox5Sm6IvquaXbvxUzWmzqcqubipXN8n37tpGOM5OQnuI_uLX1-S9_u7t9UjfX59eFrdPtOWCzNRzmoZgkDVsuBEI7kxbYOdkAqd0TJ0jeZ1rbTG0HgRpACQdXDSKxmUMw1fkqu5d5vGr53Pk12PuxTLScvKY1ogal1SOKfaNOacfLDbNHy69G0R7GEYOw9ji9jDMHZfGDYzuWRj79Nf8__QD1x5ZVI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2161851188</pqid></control><display><type>article</type><title>Median constrained bucket order rank aggregation</title><source>SpringerLink Journals - AutoHoldings</source><creator>D’Ambrosio, Antonio ; Iorio, Carmela ; Staiano, Michele ; Siciliano, Roberta</creator><creatorcontrib>D’Ambrosio, Antonio ; Iorio, Carmela ; Staiano, Michele ; Siciliano, Roberta</creatorcontrib><description>The rank aggregation problem can be summarized as the problem of aggregating individual preferences expressed by a set of judges to obtain a ranking that represents the best synthesis of their choices. Several approaches for handling this problem have been proposed and are generally linked with either axiomatic frameworks or alternative strategies. In this paper, we present a new definition of median ranking and frame it within the Kemeny’s axiomatic framework. Moreover, we show the usefulness of our approach in a practical case about triage prioritization.</description><identifier>ISSN: 0943-4062</identifier><identifier>EISSN: 1613-9658</identifier><identifier>DOI: 10.1007/s00180-018-0858-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Economic Theory/Quantitative Economics/Mathematical Methods ; Mathematics and Statistics ; Original Paper ; Probability and Statistics in Computer Science ; Probability Theory and Stochastic Processes ; Ranking ; Statistical analysis ; Statistics</subject><ispartof>Computational statistics, 2019-06, Vol.34 (2), p.787-802</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Computational Statistics is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-3246ff517c2fa5b6399cb1d5671a986fdb83447881fbe5f650064fa6e76f7a9b3</citedby><cites>FETCH-LOGICAL-c359t-3246ff517c2fa5b6399cb1d5671a986fdb83447881fbe5f650064fa6e76f7a9b3</cites><orcidid>0000-0002-1905-037X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00180-018-0858-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00180-018-0858-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>D’Ambrosio, Antonio</creatorcontrib><creatorcontrib>Iorio, Carmela</creatorcontrib><creatorcontrib>Staiano, Michele</creatorcontrib><creatorcontrib>Siciliano, Roberta</creatorcontrib><title>Median constrained bucket order rank aggregation</title><title>Computational statistics</title><addtitle>Comput Stat</addtitle><description>The rank aggregation problem can be summarized as the problem of aggregating individual preferences expressed by a set of judges to obtain a ranking that represents the best synthesis of their choices. Several approaches for handling this problem have been proposed and are generally linked with either axiomatic frameworks or alternative strategies. In this paper, we present a new definition of median ranking and frame it within the Kemeny’s axiomatic framework. Moreover, we show the usefulness of our approach in a practical case about triage prioritization.</description><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Probability and Statistics in Computer Science</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Ranking</subject><subject>Statistical analysis</subject><subject>Statistics</subject><issn>0943-4062</issn><issn>1613-9658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kDtPxDAQhC0EEsfBD6CLRG3YteNXiU68JBAN1JaT2FHuwDnsXMH9enwKEhXNTDPfrHYIuUS4RgB1kwFQAy1CQQtN90dkgRI5NVLoY7IAU3Nag2Sn5CznNQBjiuGCwIvvBherdox5Sm6IvquaXbvxUzWmzqcqubipXN8n37tpGOM5OQnuI_uLX1-S9_u7t9UjfX59eFrdPtOWCzNRzmoZgkDVsuBEI7kxbYOdkAqd0TJ0jeZ1rbTG0HgRpACQdXDSKxmUMw1fkqu5d5vGr53Pk12PuxTLScvKY1ogal1SOKfaNOacfLDbNHy69G0R7GEYOw9ji9jDMHZfGDYzuWRj79Nf8__QD1x5ZVI</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>D’Ambrosio, Antonio</creator><creator>Iorio, Carmela</creator><creator>Staiano, Michele</creator><creator>Siciliano, Roberta</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1905-037X</orcidid></search><sort><creationdate>20190601</creationdate><title>Median constrained bucket order rank aggregation</title><author>D’Ambrosio, Antonio ; Iorio, Carmela ; Staiano, Michele ; Siciliano, Roberta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-3246ff517c2fa5b6399cb1d5671a986fdb83447881fbe5f650064fa6e76f7a9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Probability and Statistics in Computer Science</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Ranking</topic><topic>Statistical analysis</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D’Ambrosio, Antonio</creatorcontrib><creatorcontrib>Iorio, Carmela</creatorcontrib><creatorcontrib>Staiano, Michele</creatorcontrib><creatorcontrib>Siciliano, Roberta</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Computational statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D’Ambrosio, Antonio</au><au>Iorio, Carmela</au><au>Staiano, Michele</au><au>Siciliano, Roberta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Median constrained bucket order rank aggregation</atitle><jtitle>Computational statistics</jtitle><stitle>Comput Stat</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>34</volume><issue>2</issue><spage>787</spage><epage>802</epage><pages>787-802</pages><issn>0943-4062</issn><eissn>1613-9658</eissn><abstract>The rank aggregation problem can be summarized as the problem of aggregating individual preferences expressed by a set of judges to obtain a ranking that represents the best synthesis of their choices. Several approaches for handling this problem have been proposed and are generally linked with either axiomatic frameworks or alternative strategies. In this paper, we present a new definition of median ranking and frame it within the Kemeny’s axiomatic framework. Moreover, we show the usefulness of our approach in a practical case about triage prioritization.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00180-018-0858-z</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1905-037X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0943-4062
ispartof Computational statistics, 2019-06, Vol.34 (2), p.787-802
issn 0943-4062
1613-9658
language eng
recordid cdi_proquest_journals_2161851188
source SpringerLink Journals - AutoHoldings
subjects Economic Theory/Quantitative Economics/Mathematical Methods
Mathematics and Statistics
Original Paper
Probability and Statistics in Computer Science
Probability Theory and Stochastic Processes
Ranking
Statistical analysis
Statistics
title Median constrained bucket order rank aggregation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A13%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Median%20constrained%20bucket%20order%20rank%20aggregation&rft.jtitle=Computational%20statistics&rft.au=D%E2%80%99Ambrosio,%20Antonio&rft.date=2019-06-01&rft.volume=34&rft.issue=2&rft.spage=787&rft.epage=802&rft.pages=787-802&rft.issn=0943-4062&rft.eissn=1613-9658&rft_id=info:doi/10.1007/s00180-018-0858-z&rft_dat=%3Cproquest_cross%3E2161851188%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2161851188&rft_id=info:pmid/&rfr_iscdi=true