A Multinomial Framework for Ideal Point Estimation
This paper creates a multinomial framework for ideal point estimation (mIRT) using recent developments in Bayesian statistics. The core model relies on a flexible multinomial specification that includes most common models in political science as “special cases.” I show that popular extensions (e.g.,...
Gespeichert in:
Veröffentlicht in: | Political analysis 2019-01, Vol.27 (1), p.69-89 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 89 |
---|---|
container_issue | 1 |
container_start_page | 69 |
container_title | Political analysis |
container_volume | 27 |
creator | Goplerud, Max |
description | This paper creates a multinomial framework for ideal point estimation (mIRT) using recent developments in Bayesian statistics. The core model relies on a flexible multinomial specification that includes most common models in political science as “special cases.” I show that popular extensions (e.g., dynamic smoothing, inclusion of covariates, and network models) can be easily incorporated whilst maintaining the ability to estimate a model using a Gibbs Sampler or exact EM algorithm. By showing that these models can be written and estimated using a shared framework, the paper aims to reduce the proliferation of bespoke ideal point models as well as extend the ability of applied researchers to estimate models quickly using the EM algorithm. I apply this framework to a thorny question in scaling survey responses—the treatment of nonresponse. Focusing on the American National Election Study (ANES), I suggest that a simple but principled solution is to treat questions as multinomial where nonresponse is a distinct (modeled) category. The exploratory results suggest that certain questions tend to attract many more invalid answers and that many of these questions (particularly when signaling out particular social groups for evaluation) are masking noncentrist (typically conservative) beliefs. |
doi_str_mv | 10.1017/pan.2018.31 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2161693240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_pan_2018_31</cupid><jstor_id>26563836</jstor_id><sourcerecordid>26563836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-a0bbeb1542bd1229e2faa4c186cad227358bbb987aed005dc89124bf30271e1a3</originalsourceid><addsrcrecordid>eNptkM1LAzEQxYMoWKsnz8KCR9maSbL5OJbSaqGiBz2HZDcrW7ubmqSI_70pLXrxNMPMj_ceD6FrwBPAIO63ZpgQDHJC4QSNgAleMiXVad4xEyUoKc7RRYxrnGmh1AiRafG026Ru8H1nNsUimN59-fBRtD4Uy8bl24vvhlTMY-p6kzo_XKKz1myiuzrOMXpbzF9nj-Xq-WE5m67KmhJIpcHWOgsVI7YBQpQjrTGsBslr0xAiaCWttTmRcQ3GVVNLBYTZlmIiwIGhY3R70N0G_7lzMem134UhW2oCHLiihOFM3R2oOvgYg2v1NuSg4VsD1vtSdC5F70vRFDJ9c6DXMfnwixJecSopz__yqGZ6G7rm3f2Z_qf3A23_bCU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2161693240</pqid></control><display><type>article</type><title>A Multinomial Framework for Ideal Point Estimation</title><source>Worldwide Political Science Abstracts</source><source>Cambridge Journals</source><source>Jstor Complete Legacy</source><source>Political Science Complete</source><creator>Goplerud, Max</creator><creatorcontrib>Goplerud, Max</creatorcontrib><description>This paper creates a multinomial framework for ideal point estimation (mIRT) using recent developments in Bayesian statistics. The core model relies on a flexible multinomial specification that includes most common models in political science as “special cases.” I show that popular extensions (e.g., dynamic smoothing, inclusion of covariates, and network models) can be easily incorporated whilst maintaining the ability to estimate a model using a Gibbs Sampler or exact EM algorithm. By showing that these models can be written and estimated using a shared framework, the paper aims to reduce the proliferation of bespoke ideal point models as well as extend the ability of applied researchers to estimate models quickly using the EM algorithm. I apply this framework to a thorny question in scaling survey responses—the treatment of nonresponse. Focusing on the American National Election Study (ANES), I suggest that a simple but principled solution is to treat questions as multinomial where nonresponse is a distinct (modeled) category. The exploratory results suggest that certain questions tend to attract many more invalid answers and that many of these questions (particularly when signaling out particular social groups for evaluation) are masking noncentrist (typically conservative) beliefs.</description><identifier>ISSN: 1047-1987</identifier><identifier>EISSN: 1476-4989</identifier><identifier>DOI: 10.1017/pan.2018.31</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Algorithms ; Bayesian analysis ; Christianity ; Economic models ; Estimation ; National elections ; Networks ; Political science ; Responses ; Social groups ; Statistics ; Values</subject><ispartof>Political analysis, 2019-01, Vol.27 (1), p.69-89</ispartof><rights>Copyright © The Author(s) 2018. Published by Cambridge University Press on behalf of the Society for Political Methodology.</rights><rights>The Author(s) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-a0bbeb1542bd1229e2faa4c186cad227358bbb987aed005dc89124bf30271e1a3</citedby><cites>FETCH-LOGICAL-c321t-a0bbeb1542bd1229e2faa4c186cad227358bbb987aed005dc89124bf30271e1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26563836$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1047198718000311/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,799,12825,27903,27904,55606,57995,58228</link.rule.ids></links><search><creatorcontrib>Goplerud, Max</creatorcontrib><title>A Multinomial Framework for Ideal Point Estimation</title><title>Political analysis</title><addtitle>Polit. Anal</addtitle><description>This paper creates a multinomial framework for ideal point estimation (mIRT) using recent developments in Bayesian statistics. The core model relies on a flexible multinomial specification that includes most common models in political science as “special cases.” I show that popular extensions (e.g., dynamic smoothing, inclusion of covariates, and network models) can be easily incorporated whilst maintaining the ability to estimate a model using a Gibbs Sampler or exact EM algorithm. By showing that these models can be written and estimated using a shared framework, the paper aims to reduce the proliferation of bespoke ideal point models as well as extend the ability of applied researchers to estimate models quickly using the EM algorithm. I apply this framework to a thorny question in scaling survey responses—the treatment of nonresponse. Focusing on the American National Election Study (ANES), I suggest that a simple but principled solution is to treat questions as multinomial where nonresponse is a distinct (modeled) category. The exploratory results suggest that certain questions tend to attract many more invalid answers and that many of these questions (particularly when signaling out particular social groups for evaluation) are masking noncentrist (typically conservative) beliefs.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Christianity</subject><subject>Economic models</subject><subject>Estimation</subject><subject>National elections</subject><subject>Networks</subject><subject>Political science</subject><subject>Responses</subject><subject>Social groups</subject><subject>Statistics</subject><subject>Values</subject><issn>1047-1987</issn><issn>1476-4989</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>7UB</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkM1LAzEQxYMoWKsnz8KCR9maSbL5OJbSaqGiBz2HZDcrW7ubmqSI_70pLXrxNMPMj_ceD6FrwBPAIO63ZpgQDHJC4QSNgAleMiXVad4xEyUoKc7RRYxrnGmh1AiRafG026Ru8H1nNsUimN59-fBRtD4Uy8bl24vvhlTMY-p6kzo_XKKz1myiuzrOMXpbzF9nj-Xq-WE5m67KmhJIpcHWOgsVI7YBQpQjrTGsBslr0xAiaCWttTmRcQ3GVVNLBYTZlmIiwIGhY3R70N0G_7lzMem134UhW2oCHLiihOFM3R2oOvgYg2v1NuSg4VsD1vtSdC5F70vRFDJ9c6DXMfnwixJecSopz__yqGZ6G7rm3f2Z_qf3A23_bCU</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Goplerud, Max</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7UB</scope><scope>7XB</scope><scope>88F</scope><scope>88J</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DPSOV</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>KC-</scope><scope>M1Q</scope><scope>M2L</scope><scope>M2O</scope><scope>M2R</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>201901</creationdate><title>A Multinomial Framework for Ideal Point Estimation</title><author>Goplerud, Max</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-a0bbeb1542bd1229e2faa4c186cad227358bbb987aed005dc89124bf30271e1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Christianity</topic><topic>Economic models</topic><topic>Estimation</topic><topic>National elections</topic><topic>Networks</topic><topic>Political science</topic><topic>Responses</topic><topic>Social groups</topic><topic>Statistics</topic><topic>Values</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goplerud, Max</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Worldwide Political Science Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Politics Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Politics Collection</collection><collection>Military Database</collection><collection>Political Science Database</collection><collection>Research Library</collection><collection>Social Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Political analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goplerud, Max</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multinomial Framework for Ideal Point Estimation</atitle><jtitle>Political analysis</jtitle><addtitle>Polit. Anal</addtitle><date>2019-01</date><risdate>2019</risdate><volume>27</volume><issue>1</issue><spage>69</spage><epage>89</epage><pages>69-89</pages><issn>1047-1987</issn><eissn>1476-4989</eissn><abstract>This paper creates a multinomial framework for ideal point estimation (mIRT) using recent developments in Bayesian statistics. The core model relies on a flexible multinomial specification that includes most common models in political science as “special cases.” I show that popular extensions (e.g., dynamic smoothing, inclusion of covariates, and network models) can be easily incorporated whilst maintaining the ability to estimate a model using a Gibbs Sampler or exact EM algorithm. By showing that these models can be written and estimated using a shared framework, the paper aims to reduce the proliferation of bespoke ideal point models as well as extend the ability of applied researchers to estimate models quickly using the EM algorithm. I apply this framework to a thorny question in scaling survey responses—the treatment of nonresponse. Focusing on the American National Election Study (ANES), I suggest that a simple but principled solution is to treat questions as multinomial where nonresponse is a distinct (modeled) category. The exploratory results suggest that certain questions tend to attract many more invalid answers and that many of these questions (particularly when signaling out particular social groups for evaluation) are masking noncentrist (typically conservative) beliefs.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/pan.2018.31</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-1987 |
ispartof | Political analysis, 2019-01, Vol.27 (1), p.69-89 |
issn | 1047-1987 1476-4989 |
language | eng |
recordid | cdi_proquest_journals_2161693240 |
source | Worldwide Political Science Abstracts; Cambridge Journals; Jstor Complete Legacy; Political Science Complete |
subjects | Algorithms Bayesian analysis Christianity Economic models Estimation National elections Networks Political science Responses Social groups Statistics Values |
title | A Multinomial Framework for Ideal Point Estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A18%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multinomial%20Framework%20for%20Ideal%20Point%20Estimation&rft.jtitle=Political%20analysis&rft.au=Goplerud,%20Max&rft.date=2019-01&rft.volume=27&rft.issue=1&rft.spage=69&rft.epage=89&rft.pages=69-89&rft.issn=1047-1987&rft.eissn=1476-4989&rft_id=info:doi/10.1017/pan.2018.31&rft_dat=%3Cjstor_proqu%3E26563836%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2161693240&rft_id=info:pmid/&rft_cupid=10_1017_pan_2018_31&rft_jstor_id=26563836&rfr_iscdi=true |