Robust Turbine Blade Optimization in the Face of Real Geometric Variations

Because of manufacturing variations, no real turbine blade exactly conforms to its nominal geometry. Even minimal deviations are known to affect aerodynamic performance, blade temperatures, and blade lifespan negatively. Rather than conventional deterministic design with its costly adherence to stri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of propulsion and power 2018-11, Vol.34 (6), p.1479-1493
Hauptverfasser: Kamenik, Jan, Voutchkov, Ivan, Toal, David J. J, Keane, Andy J, Högner, Lars, Meyer, Marcus, Bates, Ron
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1493
container_issue 6
container_start_page 1479
container_title Journal of propulsion and power
container_volume 34
creator Kamenik, Jan
Voutchkov, Ivan
Toal, David J. J
Keane, Andy J
Högner, Lars
Meyer, Marcus
Bates, Ron
description Because of manufacturing variations, no real turbine blade exactly conforms to its nominal geometry. Even minimal deviations are known to affect aerodynamic performance, blade temperatures, and blade lifespan negatively. Rather than conventional deterministic design with its costly adherence to strict control of tolerance limits, robust design optimization aims to incorporate inevitable variations into the design process itself, so that both performance mean and scatter can be optimized simultaneously. Such a workflow is presented and applied in this paper to aerodynamically optimize an industrial turbine rotor blade against realistic manufacturing variations. A set of digitized three-dimensional laser scans from two turbofan engines forms the core of this study. On the basis of these deviations, the approach uses high-fidelity geometric models, nonintrusive uncertainty quantification, and efficient robust optimization with constraints to effectively locate Pareto-optimal designs. One selected robust blade is validated and shown to be desensitized to the observed manufacturing variability. The underlying measurement data are crucial to obtain realistic results and, as a consequence, are vital to design real robust turbine blades.
doi_str_mv 10.2514/1.B37091
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2161689072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2493569216</sourcerecordid><originalsourceid>FETCH-LOGICAL-a347t-d3c29bf764ca57138411e25d3d17f7bc7ab5bbb2f92d0d3ad944b7b3f1be46ca3</originalsourceid><addsrcrecordid>eNp90MFLwzAUBvAgCs4p-CcERPDSmZekSXt0w01lMBjTa3lpU8zY2pmkB_3rrVbwIHh6lx_fx_sIuQQ24SnIW5hMhWY5HJERpEIkItPqmIyYllkiVZqdkrMQtoyBypQekad1a7oQ6abzxjWWTndYWbo6RLd3Hxhd21DX0Phq6RxLS9uari3u6MK2exu9K-kLevftwjk5qXEX7MXPHZPn-f1m9pAsV4vH2d0yQSF1TCpR8tzUWskSUw0ikwCWp5WoQNfalBpNaozhdc4rVgmscimNNqIGY6UqUYzJ1ZB78O1bZ0Mstm3nm76y4DIXqco5qH8VqP77nGneq5tBlb4Nwdu6OHi3R_9eACu-9iygGPbs6fVA0SH-hv1xn9QUcYc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2161689072</pqid></control><display><type>article</type><title>Robust Turbine Blade Optimization in the Face of Real Geometric Variations</title><source>Alma/SFX Local Collection</source><creator>Kamenik, Jan ; Voutchkov, Ivan ; Toal, David J. J ; Keane, Andy J ; Högner, Lars ; Meyer, Marcus ; Bates, Ron</creator><creatorcontrib>Kamenik, Jan ; Voutchkov, Ivan ; Toal, David J. J ; Keane, Andy J ; Högner, Lars ; Meyer, Marcus ; Bates, Ron</creatorcontrib><description>Because of manufacturing variations, no real turbine blade exactly conforms to its nominal geometry. Even minimal deviations are known to affect aerodynamic performance, blade temperatures, and blade lifespan negatively. Rather than conventional deterministic design with its costly adherence to strict control of tolerance limits, robust design optimization aims to incorporate inevitable variations into the design process itself, so that both performance mean and scatter can be optimized simultaneously. Such a workflow is presented and applied in this paper to aerodynamically optimize an industrial turbine rotor blade against realistic manufacturing variations. A set of digitized three-dimensional laser scans from two turbofan engines forms the core of this study. On the basis of these deviations, the approach uses high-fidelity geometric models, nonintrusive uncertainty quantification, and efficient robust optimization with constraints to effectively locate Pareto-optimal designs. One selected robust blade is validated and shown to be desensitized to the observed manufacturing variability. The underlying measurement data are crucial to obtain realistic results and, as a consequence, are vital to design real robust turbine blades.</description><identifier>ISSN: 0748-4658</identifier><identifier>EISSN: 1533-3876</identifier><identifier>DOI: 10.2514/1.B37091</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Design optimization ; Deviation ; Digitization ; Manufacturing ; Pareto optimization ; Robust control ; Robust design ; Rotor blades ; Rotor blades (turbomachinery) ; Turbine blades ; Turbines ; Turbofan engines ; Workflow</subject><ispartof>Journal of propulsion and power, 2018-11, Vol.34 (6), p.1479-1493</ispartof><rights>Copyright © 2018 by Rolls-Royce plc. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at ; employ the ISSN (print) or (online) to initiate your request. See also AIAA Rights and Permissions .</rights><rights>Copyright © 2018 by Rolls-Royce plc. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0748-4658 (print) or 1533-3876 (online) to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a347t-d3c29bf764ca57138411e25d3d17f7bc7ab5bbb2f92d0d3ad944b7b3f1be46ca3</citedby><cites>FETCH-LOGICAL-a347t-d3c29bf764ca57138411e25d3d17f7bc7ab5bbb2f92d0d3ad944b7b3f1be46ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kamenik, Jan</creatorcontrib><creatorcontrib>Voutchkov, Ivan</creatorcontrib><creatorcontrib>Toal, David J. J</creatorcontrib><creatorcontrib>Keane, Andy J</creatorcontrib><creatorcontrib>Högner, Lars</creatorcontrib><creatorcontrib>Meyer, Marcus</creatorcontrib><creatorcontrib>Bates, Ron</creatorcontrib><title>Robust Turbine Blade Optimization in the Face of Real Geometric Variations</title><title>Journal of propulsion and power</title><description>Because of manufacturing variations, no real turbine blade exactly conforms to its nominal geometry. Even minimal deviations are known to affect aerodynamic performance, blade temperatures, and blade lifespan negatively. Rather than conventional deterministic design with its costly adherence to strict control of tolerance limits, robust design optimization aims to incorporate inevitable variations into the design process itself, so that both performance mean and scatter can be optimized simultaneously. Such a workflow is presented and applied in this paper to aerodynamically optimize an industrial turbine rotor blade against realistic manufacturing variations. A set of digitized three-dimensional laser scans from two turbofan engines forms the core of this study. On the basis of these deviations, the approach uses high-fidelity geometric models, nonintrusive uncertainty quantification, and efficient robust optimization with constraints to effectively locate Pareto-optimal designs. One selected robust blade is validated and shown to be desensitized to the observed manufacturing variability. The underlying measurement data are crucial to obtain realistic results and, as a consequence, are vital to design real robust turbine blades.</description><subject>Design optimization</subject><subject>Deviation</subject><subject>Digitization</subject><subject>Manufacturing</subject><subject>Pareto optimization</subject><subject>Robust control</subject><subject>Robust design</subject><subject>Rotor blades</subject><subject>Rotor blades (turbomachinery)</subject><subject>Turbine blades</subject><subject>Turbines</subject><subject>Turbofan engines</subject><subject>Workflow</subject><issn>0748-4658</issn><issn>1533-3876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90MFLwzAUBvAgCs4p-CcERPDSmZekSXt0w01lMBjTa3lpU8zY2pmkB_3rrVbwIHh6lx_fx_sIuQQ24SnIW5hMhWY5HJERpEIkItPqmIyYllkiVZqdkrMQtoyBypQekad1a7oQ6abzxjWWTndYWbo6RLd3Hxhd21DX0Phq6RxLS9uari3u6MK2exu9K-kLevftwjk5qXEX7MXPHZPn-f1m9pAsV4vH2d0yQSF1TCpR8tzUWskSUw0ikwCWp5WoQNfalBpNaozhdc4rVgmscimNNqIGY6UqUYzJ1ZB78O1bZ0Mstm3nm76y4DIXqco5qH8VqP77nGneq5tBlb4Nwdu6OHi3R_9eACu-9iygGPbs6fVA0SH-hv1xn9QUcYc</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Kamenik, Jan</creator><creator>Voutchkov, Ivan</creator><creator>Toal, David J. J</creator><creator>Keane, Andy J</creator><creator>Högner, Lars</creator><creator>Meyer, Marcus</creator><creator>Bates, Ron</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20181101</creationdate><title>Robust Turbine Blade Optimization in the Face of Real Geometric Variations</title><author>Kamenik, Jan ; Voutchkov, Ivan ; Toal, David J. J ; Keane, Andy J ; Högner, Lars ; Meyer, Marcus ; Bates, Ron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a347t-d3c29bf764ca57138411e25d3d17f7bc7ab5bbb2f92d0d3ad944b7b3f1be46ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Design optimization</topic><topic>Deviation</topic><topic>Digitization</topic><topic>Manufacturing</topic><topic>Pareto optimization</topic><topic>Robust control</topic><topic>Robust design</topic><topic>Rotor blades</topic><topic>Rotor blades (turbomachinery)</topic><topic>Turbine blades</topic><topic>Turbines</topic><topic>Turbofan engines</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamenik, Jan</creatorcontrib><creatorcontrib>Voutchkov, Ivan</creatorcontrib><creatorcontrib>Toal, David J. J</creatorcontrib><creatorcontrib>Keane, Andy J</creatorcontrib><creatorcontrib>Högner, Lars</creatorcontrib><creatorcontrib>Meyer, Marcus</creatorcontrib><creatorcontrib>Bates, Ron</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of propulsion and power</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamenik, Jan</au><au>Voutchkov, Ivan</au><au>Toal, David J. J</au><au>Keane, Andy J</au><au>Högner, Lars</au><au>Meyer, Marcus</au><au>Bates, Ron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Turbine Blade Optimization in the Face of Real Geometric Variations</atitle><jtitle>Journal of propulsion and power</jtitle><date>2018-11-01</date><risdate>2018</risdate><volume>34</volume><issue>6</issue><spage>1479</spage><epage>1493</epage><pages>1479-1493</pages><issn>0748-4658</issn><eissn>1533-3876</eissn><abstract>Because of manufacturing variations, no real turbine blade exactly conforms to its nominal geometry. Even minimal deviations are known to affect aerodynamic performance, blade temperatures, and blade lifespan negatively. Rather than conventional deterministic design with its costly adherence to strict control of tolerance limits, robust design optimization aims to incorporate inevitable variations into the design process itself, so that both performance mean and scatter can be optimized simultaneously. Such a workflow is presented and applied in this paper to aerodynamically optimize an industrial turbine rotor blade against realistic manufacturing variations. A set of digitized three-dimensional laser scans from two turbofan engines forms the core of this study. On the basis of these deviations, the approach uses high-fidelity geometric models, nonintrusive uncertainty quantification, and efficient robust optimization with constraints to effectively locate Pareto-optimal designs. One selected robust blade is validated and shown to be desensitized to the observed manufacturing variability. The underlying measurement data are crucial to obtain realistic results and, as a consequence, are vital to design real robust turbine blades.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.B37091</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0748-4658
ispartof Journal of propulsion and power, 2018-11, Vol.34 (6), p.1479-1493
issn 0748-4658
1533-3876
language eng
recordid cdi_proquest_journals_2161689072
source Alma/SFX Local Collection
subjects Design optimization
Deviation
Digitization
Manufacturing
Pareto optimization
Robust control
Robust design
Rotor blades
Rotor blades (turbomachinery)
Turbine blades
Turbines
Turbofan engines
Workflow
title Robust Turbine Blade Optimization in the Face of Real Geometric Variations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A30%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Turbine%20Blade%20Optimization%20in%20the%20Face%20of%20Real%20Geometric%20Variations&rft.jtitle=Journal%20of%20propulsion%20and%20power&rft.au=Kamenik,%20Jan&rft.date=2018-11-01&rft.volume=34&rft.issue=6&rft.spage=1479&rft.epage=1493&rft.pages=1479-1493&rft.issn=0748-4658&rft.eissn=1533-3876&rft_id=info:doi/10.2514/1.B37091&rft_dat=%3Cproquest_cross%3E2493569216%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2161689072&rft_id=info:pmid/&rfr_iscdi=true