Robust Turbine Blade Optimization in the Face of Real Geometric Variations
Because of manufacturing variations, no real turbine blade exactly conforms to its nominal geometry. Even minimal deviations are known to affect aerodynamic performance, blade temperatures, and blade lifespan negatively. Rather than conventional deterministic design with its costly adherence to stri...
Gespeichert in:
Veröffentlicht in: | Journal of propulsion and power 2018-11, Vol.34 (6), p.1479-1493 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1493 |
---|---|
container_issue | 6 |
container_start_page | 1479 |
container_title | Journal of propulsion and power |
container_volume | 34 |
creator | Kamenik, Jan Voutchkov, Ivan Toal, David J. J Keane, Andy J Högner, Lars Meyer, Marcus Bates, Ron |
description | Because of manufacturing variations, no real turbine blade exactly conforms to its nominal geometry. Even minimal deviations are known to affect aerodynamic performance, blade temperatures, and blade lifespan negatively. Rather than conventional deterministic design with its costly adherence to strict control of tolerance limits, robust design optimization aims to incorporate inevitable variations into the design process itself, so that both performance mean and scatter can be optimized simultaneously. Such a workflow is presented and applied in this paper to aerodynamically optimize an industrial turbine rotor blade against realistic manufacturing variations. A set of digitized three-dimensional laser scans from two turbofan engines forms the core of this study. On the basis of these deviations, the approach uses high-fidelity geometric models, nonintrusive uncertainty quantification, and efficient robust optimization with constraints to effectively locate Pareto-optimal designs. One selected robust blade is validated and shown to be desensitized to the observed manufacturing variability. The underlying measurement data are crucial to obtain realistic results and, as a consequence, are vital to design real robust turbine blades. |
doi_str_mv | 10.2514/1.B37091 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2161689072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2493569216</sourcerecordid><originalsourceid>FETCH-LOGICAL-a347t-d3c29bf764ca57138411e25d3d17f7bc7ab5bbb2f92d0d3ad944b7b3f1be46ca3</originalsourceid><addsrcrecordid>eNp90MFLwzAUBvAgCs4p-CcERPDSmZekSXt0w01lMBjTa3lpU8zY2pmkB_3rrVbwIHh6lx_fx_sIuQQ24SnIW5hMhWY5HJERpEIkItPqmIyYllkiVZqdkrMQtoyBypQekad1a7oQ6abzxjWWTndYWbo6RLd3Hxhd21DX0Phq6RxLS9uari3u6MK2exu9K-kLevftwjk5qXEX7MXPHZPn-f1m9pAsV4vH2d0yQSF1TCpR8tzUWskSUw0ikwCWp5WoQNfalBpNaozhdc4rVgmscimNNqIGY6UqUYzJ1ZB78O1bZ0Mstm3nm76y4DIXqco5qH8VqP77nGneq5tBlb4Nwdu6OHi3R_9eACu-9iygGPbs6fVA0SH-hv1xn9QUcYc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2161689072</pqid></control><display><type>article</type><title>Robust Turbine Blade Optimization in the Face of Real Geometric Variations</title><source>Alma/SFX Local Collection</source><creator>Kamenik, Jan ; Voutchkov, Ivan ; Toal, David J. J ; Keane, Andy J ; Högner, Lars ; Meyer, Marcus ; Bates, Ron</creator><creatorcontrib>Kamenik, Jan ; Voutchkov, Ivan ; Toal, David J. J ; Keane, Andy J ; Högner, Lars ; Meyer, Marcus ; Bates, Ron</creatorcontrib><description>Because of manufacturing variations, no real turbine blade exactly conforms to its nominal geometry. Even minimal deviations are known to affect aerodynamic performance, blade temperatures, and blade lifespan negatively. Rather than conventional deterministic design with its costly adherence to strict control of tolerance limits, robust design optimization aims to incorporate inevitable variations into the design process itself, so that both performance mean and scatter can be optimized simultaneously. Such a workflow is presented and applied in this paper to aerodynamically optimize an industrial turbine rotor blade against realistic manufacturing variations. A set of digitized three-dimensional laser scans from two turbofan engines forms the core of this study. On the basis of these deviations, the approach uses high-fidelity geometric models, nonintrusive uncertainty quantification, and efficient robust optimization with constraints to effectively locate Pareto-optimal designs. One selected robust blade is validated and shown to be desensitized to the observed manufacturing variability. The underlying measurement data are crucial to obtain realistic results and, as a consequence, are vital to design real robust turbine blades.</description><identifier>ISSN: 0748-4658</identifier><identifier>EISSN: 1533-3876</identifier><identifier>DOI: 10.2514/1.B37091</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Design optimization ; Deviation ; Digitization ; Manufacturing ; Pareto optimization ; Robust control ; Robust design ; Rotor blades ; Rotor blades (turbomachinery) ; Turbine blades ; Turbines ; Turbofan engines ; Workflow</subject><ispartof>Journal of propulsion and power, 2018-11, Vol.34 (6), p.1479-1493</ispartof><rights>Copyright © 2018 by Rolls-Royce plc. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at ; employ the ISSN (print) or (online) to initiate your request. See also AIAA Rights and Permissions .</rights><rights>Copyright © 2018 by Rolls-Royce plc. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0748-4658 (print) or 1533-3876 (online) to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a347t-d3c29bf764ca57138411e25d3d17f7bc7ab5bbb2f92d0d3ad944b7b3f1be46ca3</citedby><cites>FETCH-LOGICAL-a347t-d3c29bf764ca57138411e25d3d17f7bc7ab5bbb2f92d0d3ad944b7b3f1be46ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kamenik, Jan</creatorcontrib><creatorcontrib>Voutchkov, Ivan</creatorcontrib><creatorcontrib>Toal, David J. J</creatorcontrib><creatorcontrib>Keane, Andy J</creatorcontrib><creatorcontrib>Högner, Lars</creatorcontrib><creatorcontrib>Meyer, Marcus</creatorcontrib><creatorcontrib>Bates, Ron</creatorcontrib><title>Robust Turbine Blade Optimization in the Face of Real Geometric Variations</title><title>Journal of propulsion and power</title><description>Because of manufacturing variations, no real turbine blade exactly conforms to its nominal geometry. Even minimal deviations are known to affect aerodynamic performance, blade temperatures, and blade lifespan negatively. Rather than conventional deterministic design with its costly adherence to strict control of tolerance limits, robust design optimization aims to incorporate inevitable variations into the design process itself, so that both performance mean and scatter can be optimized simultaneously. Such a workflow is presented and applied in this paper to aerodynamically optimize an industrial turbine rotor blade against realistic manufacturing variations. A set of digitized three-dimensional laser scans from two turbofan engines forms the core of this study. On the basis of these deviations, the approach uses high-fidelity geometric models, nonintrusive uncertainty quantification, and efficient robust optimization with constraints to effectively locate Pareto-optimal designs. One selected robust blade is validated and shown to be desensitized to the observed manufacturing variability. The underlying measurement data are crucial to obtain realistic results and, as a consequence, are vital to design real robust turbine blades.</description><subject>Design optimization</subject><subject>Deviation</subject><subject>Digitization</subject><subject>Manufacturing</subject><subject>Pareto optimization</subject><subject>Robust control</subject><subject>Robust design</subject><subject>Rotor blades</subject><subject>Rotor blades (turbomachinery)</subject><subject>Turbine blades</subject><subject>Turbines</subject><subject>Turbofan engines</subject><subject>Workflow</subject><issn>0748-4658</issn><issn>1533-3876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90MFLwzAUBvAgCs4p-CcERPDSmZekSXt0w01lMBjTa3lpU8zY2pmkB_3rrVbwIHh6lx_fx_sIuQQ24SnIW5hMhWY5HJERpEIkItPqmIyYllkiVZqdkrMQtoyBypQekad1a7oQ6abzxjWWTndYWbo6RLd3Hxhd21DX0Phq6RxLS9uari3u6MK2exu9K-kLevftwjk5qXEX7MXPHZPn-f1m9pAsV4vH2d0yQSF1TCpR8tzUWskSUw0ikwCWp5WoQNfalBpNaozhdc4rVgmscimNNqIGY6UqUYzJ1ZB78O1bZ0Mstm3nm76y4DIXqco5qH8VqP77nGneq5tBlb4Nwdu6OHi3R_9eACu-9iygGPbs6fVA0SH-hv1xn9QUcYc</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Kamenik, Jan</creator><creator>Voutchkov, Ivan</creator><creator>Toal, David J. J</creator><creator>Keane, Andy J</creator><creator>Högner, Lars</creator><creator>Meyer, Marcus</creator><creator>Bates, Ron</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20181101</creationdate><title>Robust Turbine Blade Optimization in the Face of Real Geometric Variations</title><author>Kamenik, Jan ; Voutchkov, Ivan ; Toal, David J. J ; Keane, Andy J ; Högner, Lars ; Meyer, Marcus ; Bates, Ron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a347t-d3c29bf764ca57138411e25d3d17f7bc7ab5bbb2f92d0d3ad944b7b3f1be46ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Design optimization</topic><topic>Deviation</topic><topic>Digitization</topic><topic>Manufacturing</topic><topic>Pareto optimization</topic><topic>Robust control</topic><topic>Robust design</topic><topic>Rotor blades</topic><topic>Rotor blades (turbomachinery)</topic><topic>Turbine blades</topic><topic>Turbines</topic><topic>Turbofan engines</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamenik, Jan</creatorcontrib><creatorcontrib>Voutchkov, Ivan</creatorcontrib><creatorcontrib>Toal, David J. J</creatorcontrib><creatorcontrib>Keane, Andy J</creatorcontrib><creatorcontrib>Högner, Lars</creatorcontrib><creatorcontrib>Meyer, Marcus</creatorcontrib><creatorcontrib>Bates, Ron</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of propulsion and power</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamenik, Jan</au><au>Voutchkov, Ivan</au><au>Toal, David J. J</au><au>Keane, Andy J</au><au>Högner, Lars</au><au>Meyer, Marcus</au><au>Bates, Ron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Turbine Blade Optimization in the Face of Real Geometric Variations</atitle><jtitle>Journal of propulsion and power</jtitle><date>2018-11-01</date><risdate>2018</risdate><volume>34</volume><issue>6</issue><spage>1479</spage><epage>1493</epage><pages>1479-1493</pages><issn>0748-4658</issn><eissn>1533-3876</eissn><abstract>Because of manufacturing variations, no real turbine blade exactly conforms to its nominal geometry. Even minimal deviations are known to affect aerodynamic performance, blade temperatures, and blade lifespan negatively. Rather than conventional deterministic design with its costly adherence to strict control of tolerance limits, robust design optimization aims to incorporate inevitable variations into the design process itself, so that both performance mean and scatter can be optimized simultaneously. Such a workflow is presented and applied in this paper to aerodynamically optimize an industrial turbine rotor blade against realistic manufacturing variations. A set of digitized three-dimensional laser scans from two turbofan engines forms the core of this study. On the basis of these deviations, the approach uses high-fidelity geometric models, nonintrusive uncertainty quantification, and efficient robust optimization with constraints to effectively locate Pareto-optimal designs. One selected robust blade is validated and shown to be desensitized to the observed manufacturing variability. The underlying measurement data are crucial to obtain realistic results and, as a consequence, are vital to design real robust turbine blades.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.B37091</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0748-4658 |
ispartof | Journal of propulsion and power, 2018-11, Vol.34 (6), p.1479-1493 |
issn | 0748-4658 1533-3876 |
language | eng |
recordid | cdi_proquest_journals_2161689072 |
source | Alma/SFX Local Collection |
subjects | Design optimization Deviation Digitization Manufacturing Pareto optimization Robust control Robust design Rotor blades Rotor blades (turbomachinery) Turbine blades Turbines Turbofan engines Workflow |
title | Robust Turbine Blade Optimization in the Face of Real Geometric Variations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A30%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Turbine%20Blade%20Optimization%20in%20the%20Face%20of%20Real%20Geometric%20Variations&rft.jtitle=Journal%20of%20propulsion%20and%20power&rft.au=Kamenik,%20Jan&rft.date=2018-11-01&rft.volume=34&rft.issue=6&rft.spage=1479&rft.epage=1493&rft.pages=1479-1493&rft.issn=0748-4658&rft.eissn=1533-3876&rft_id=info:doi/10.2514/1.B37091&rft_dat=%3Cproquest_cross%3E2493569216%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2161689072&rft_id=info:pmid/&rfr_iscdi=true |