Immersed Finite Element Particle-in-Cell Simulations of Plasma Charging at the Lunar Terminator
A fully kinetic particle-in-cell model combined with a nonhomogeneous interface immersed finite element field solver is presented for simulations of the plasma charging at the lunar terminator. This model explicitly includes the lunar regolith layer and the bedrock in the simulation domain, taking i...
Gespeichert in:
Veröffentlicht in: | Journal of spacecraft and rockets 2018-11, Vol.55 (6), p.1490-1497 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1497 |
---|---|
container_issue | 6 |
container_start_page | 1490 |
container_title | Journal of spacecraft and rockets |
container_volume | 55 |
creator | Han, Daoru Wang, Joseph J He, Xiaoming |
description | A fully kinetic particle-in-cell model combined with a nonhomogeneous interface immersed finite element field solver is presented for simulations of the plasma charging at the lunar terminator. This model explicitly includes the lunar regolith layer and the bedrock in the simulation domain, taking into account of regolith layer thickness and permittivity, and is capable of resolving a nontrivial surface terrain or spacecraft configuration. Simulations are presented to study surface charging and lunar outpost charging at the lunar terminator region. The results suggest that substantial differential charging can develop, even under a very moderate plasma charging environment. |
doi_str_mv | 10.2514/1.A34002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_proquest_journals_2161688367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2494669640</sourcerecordid><originalsourceid>FETCH-LOGICAL-a313t-e7545b48da9abe8cd3b6f5fd2d388a9f701dd721d183be30c8b6f01d119349893</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYMoOKfgTwiI4Etn0qRp8jjKpsLAgfM53LbpltGmM0kf_PdWKvgg-HTh3I9z4EPolpJFmlH-SBdLxglJz9CMZowlIlf8HM3GJE24yMglugrhSAgVUqgZ0i9dZ3wwNV5bZ6PBq9Z0xkW8BR9t1ZrEuqQwbYvfbDe0EG3vAu4bvG0hdICLA_i9dXsMEceDwZvBgcc74zvrIPb-Gl000AZz83Pn6H292hXPyeb16aVYbhJglMXE5BnPSi5rUFAaWdWsFE3W1GnNpATV5ITWdZ7SmkpWGkYqOf7HjFLFuJKKzdHd1Hvy_cdgQtTHfvBunNQpV1wIJTj5l6JiVCKZyEfqYaIq34fgTaNP3nbgPzUl-luypnqSPKL3EwoW4LfsD_cFvJl4gA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2161688367</pqid></control><display><type>article</type><title>Immersed Finite Element Particle-in-Cell Simulations of Plasma Charging at the Lunar Terminator</title><source>Alma/SFX Local Collection</source><creator>Han, Daoru ; Wang, Joseph J ; He, Xiaoming</creator><creatorcontrib>Han, Daoru ; Wang, Joseph J ; He, Xiaoming</creatorcontrib><description>A fully kinetic particle-in-cell model combined with a nonhomogeneous interface immersed finite element field solver is presented for simulations of the plasma charging at the lunar terminator. This model explicitly includes the lunar regolith layer and the bedrock in the simulation domain, taking into account of regolith layer thickness and permittivity, and is capable of resolving a nontrivial surface terrain or spacecraft configuration. Simulations are presented to study surface charging and lunar outpost charging at the lunar terminator region. The results suggest that substantial differential charging can develop, even under a very moderate plasma charging environment.</description><identifier>ISSN: 0022-4650</identifier><identifier>EISSN: 1533-6794</identifier><identifier>DOI: 10.2514/1.A34002</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Bedrock ; Charging ; Computer simulation ; Finite element method ; Lunar surface ; Mathematical analysis ; Particle in cell technique ; Regolith ; Simulation ; Spacecraft configurations ; Thickness</subject><ispartof>Journal of spacecraft and rockets, 2018-11, Vol.55 (6), p.1490-1497</ispartof><rights>Copyright © 2018 by Daoru Han, Joseph J. Wang, and Xiaoming He. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at ; employ the ISSN (print) or (online) to initiate your request. See also AIAA Rights and Permissions .</rights><rights>Copyright © 2018 by Daoru Han, Joseph J. Wang, and Xiaoming He. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0022-4650 (print) or 1533-6794 (online) to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a313t-e7545b48da9abe8cd3b6f5fd2d388a9f701dd721d183be30c8b6f01d119349893</citedby><cites>FETCH-LOGICAL-a313t-e7545b48da9abe8cd3b6f5fd2d388a9f701dd721d183be30c8b6f01d119349893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Han, Daoru</creatorcontrib><creatorcontrib>Wang, Joseph J</creatorcontrib><creatorcontrib>He, Xiaoming</creatorcontrib><title>Immersed Finite Element Particle-in-Cell Simulations of Plasma Charging at the Lunar Terminator</title><title>Journal of spacecraft and rockets</title><description>A fully kinetic particle-in-cell model combined with a nonhomogeneous interface immersed finite element field solver is presented for simulations of the plasma charging at the lunar terminator. This model explicitly includes the lunar regolith layer and the bedrock in the simulation domain, taking into account of regolith layer thickness and permittivity, and is capable of resolving a nontrivial surface terrain or spacecraft configuration. Simulations are presented to study surface charging and lunar outpost charging at the lunar terminator region. The results suggest that substantial differential charging can develop, even under a very moderate plasma charging environment.</description><subject>Bedrock</subject><subject>Charging</subject><subject>Computer simulation</subject><subject>Finite element method</subject><subject>Lunar surface</subject><subject>Mathematical analysis</subject><subject>Particle in cell technique</subject><subject>Regolith</subject><subject>Simulation</subject><subject>Spacecraft configurations</subject><subject>Thickness</subject><issn>0022-4650</issn><issn>1533-6794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kFFLwzAUhYMoOKfgTwiI4Etn0qRp8jjKpsLAgfM53LbpltGmM0kf_PdWKvgg-HTh3I9z4EPolpJFmlH-SBdLxglJz9CMZowlIlf8HM3GJE24yMglugrhSAgVUqgZ0i9dZ3wwNV5bZ6PBq9Z0xkW8BR9t1ZrEuqQwbYvfbDe0EG3vAu4bvG0hdICLA_i9dXsMEceDwZvBgcc74zvrIPb-Gl000AZz83Pn6H292hXPyeb16aVYbhJglMXE5BnPSi5rUFAaWdWsFE3W1GnNpATV5ITWdZ7SmkpWGkYqOf7HjFLFuJKKzdHd1Hvy_cdgQtTHfvBunNQpV1wIJTj5l6JiVCKZyEfqYaIq34fgTaNP3nbgPzUl-luypnqSPKL3EwoW4LfsD_cFvJl4gA</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Han, Daoru</creator><creator>Wang, Joseph J</creator><creator>He, Xiaoming</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201811</creationdate><title>Immersed Finite Element Particle-in-Cell Simulations of Plasma Charging at the Lunar Terminator</title><author>Han, Daoru ; Wang, Joseph J ; He, Xiaoming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a313t-e7545b48da9abe8cd3b6f5fd2d388a9f701dd721d183be30c8b6f01d119349893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bedrock</topic><topic>Charging</topic><topic>Computer simulation</topic><topic>Finite element method</topic><topic>Lunar surface</topic><topic>Mathematical analysis</topic><topic>Particle in cell technique</topic><topic>Regolith</topic><topic>Simulation</topic><topic>Spacecraft configurations</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Daoru</creatorcontrib><creatorcontrib>Wang, Joseph J</creatorcontrib><creatorcontrib>He, Xiaoming</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of spacecraft and rockets</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Daoru</au><au>Wang, Joseph J</au><au>He, Xiaoming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Immersed Finite Element Particle-in-Cell Simulations of Plasma Charging at the Lunar Terminator</atitle><jtitle>Journal of spacecraft and rockets</jtitle><date>2018-11</date><risdate>2018</risdate><volume>55</volume><issue>6</issue><spage>1490</spage><epage>1497</epage><pages>1490-1497</pages><issn>0022-4650</issn><eissn>1533-6794</eissn><abstract>A fully kinetic particle-in-cell model combined with a nonhomogeneous interface immersed finite element field solver is presented for simulations of the plasma charging at the lunar terminator. This model explicitly includes the lunar regolith layer and the bedrock in the simulation domain, taking into account of regolith layer thickness and permittivity, and is capable of resolving a nontrivial surface terrain or spacecraft configuration. Simulations are presented to study surface charging and lunar outpost charging at the lunar terminator region. The results suggest that substantial differential charging can develop, even under a very moderate plasma charging environment.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.A34002</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4650 |
ispartof | Journal of spacecraft and rockets, 2018-11, Vol.55 (6), p.1490-1497 |
issn | 0022-4650 1533-6794 |
language | eng |
recordid | cdi_proquest_journals_2161688367 |
source | Alma/SFX Local Collection |
subjects | Bedrock Charging Computer simulation Finite element method Lunar surface Mathematical analysis Particle in cell technique Regolith Simulation Spacecraft configurations Thickness |
title | Immersed Finite Element Particle-in-Cell Simulations of Plasma Charging at the Lunar Terminator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A50%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Immersed%20Finite%20Element%20Particle-in-Cell%20Simulations%20of%20Plasma%20Charging%20at%20the%20Lunar%20Terminator&rft.jtitle=Journal%20of%20spacecraft%20and%20rockets&rft.au=Han,%20Daoru&rft.date=2018-11&rft.volume=55&rft.issue=6&rft.spage=1490&rft.epage=1497&rft.pages=1490-1497&rft.issn=0022-4650&rft.eissn=1533-6794&rft_id=info:doi/10.2514/1.A34002&rft_dat=%3Cproquest_aiaa_%3E2494669640%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2161688367&rft_id=info:pmid/&rfr_iscdi=true |