Uniform in Time Lower Bound for Solutions to a Quantum Boltzmann Equation of Bosons

In this paper, we consider a quantum Boltzmann equation, which describes the interaction between excited atoms and a condensate. The collision integrals are taken–over energy manifolds, having the full form of the Bogoliubov dispersion law for particle energy. We prove that nonnegative radially symm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 2019-01, Vol.231 (1), p.63-89
Hauptverfasser: Nguyen, Toan T., Tran, Minh-Binh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 89
container_issue 1
container_start_page 63
container_title Archive for rational mechanics and analysis
container_volume 231
creator Nguyen, Toan T.
Tran, Minh-Binh
description In this paper, we consider a quantum Boltzmann equation, which describes the interaction between excited atoms and a condensate. The collision integrals are taken–over energy manifolds, having the full form of the Bogoliubov dispersion law for particle energy. We prove that nonnegative radially symmetric solutions of the quantum Boltzmann equation are bounded from below by a Gaussian distribution, uniformly in time.
doi_str_mv 10.1007/s00205-018-1271-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2161379194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2161379194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-1444d414d4f064617c045ed993ea73d678af47d7268a0d2d45a1877fad2d79ed3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAczSTZJPdo5b6AQsibc8hNFnZ0k3aZBexv94sK3jyMMzX887Ai9At0HugVD0kShktCIWSAFNATmdoBoIzQqXi52hGKeWkKpi6RFcp7caWcTlDq41vmxA73Hq8bjuH6_DlIn4Kg7c4L_Aq7Ie-DT7hPmCDPwbj-6HLwL4_dcZ7vDwOZgRwaPI0ZfIaXTRmn9zNb56jzfNyvXgl9fvL2-KxJlsOsicghLACcjRUCglqS0XhbFVxZxS3UpWmEcoqJktDLbOiMFAq1Zhcq8pZPkd3091DDMfBpV7vwhB9fqkZSOCqgkpkCiZqG0NK0TX6ENvOxG8NVI_e6ck7nb3To3f6lDVs0qTM-k8X_y7_L_oBqzxxFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2161379194</pqid></control><display><type>article</type><title>Uniform in Time Lower Bound for Solutions to a Quantum Boltzmann Equation of Bosons</title><source>Springer Nature - Complete Springer Journals</source><creator>Nguyen, Toan T. ; Tran, Minh-Binh</creator><creatorcontrib>Nguyen, Toan T. ; Tran, Minh-Binh</creatorcontrib><description>In this paper, we consider a quantum Boltzmann equation, which describes the interaction between excited atoms and a condensate. The collision integrals are taken–over energy manifolds, having the full form of the Bogoliubov dispersion law for particle energy. We prove that nonnegative radially symmetric solutions of the quantum Boltzmann equation are bounded from below by a Gaussian distribution, uniformly in time.</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s00205-018-1271-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Boltzmann transport equation ; Bosons ; Classical Mechanics ; Complex Systems ; Fluid- and Aerodynamics ; Gaussian distribution ; Lower bounds ; Mathematical analysis ; Mathematical and Computational Physics ; Normal distribution ; Particle energy ; Physics ; Physics and Astronomy ; Theoretical</subject><ispartof>Archive for rational mechanics and analysis, 2019-01, Vol.231 (1), p.63-89</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-1444d414d4f064617c045ed993ea73d678af47d7268a0d2d45a1877fad2d79ed3</citedby><cites>FETCH-LOGICAL-c316t-1444d414d4f064617c045ed993ea73d678af47d7268a0d2d45a1877fad2d79ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00205-018-1271-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00205-018-1271-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Nguyen, Toan T.</creatorcontrib><creatorcontrib>Tran, Minh-Binh</creatorcontrib><title>Uniform in Time Lower Bound for Solutions to a Quantum Boltzmann Equation of Bosons</title><title>Archive for rational mechanics and analysis</title><addtitle>Arch Rational Mech Anal</addtitle><description>In this paper, we consider a quantum Boltzmann equation, which describes the interaction between excited atoms and a condensate. The collision integrals are taken–over energy manifolds, having the full form of the Bogoliubov dispersion law for particle energy. We prove that nonnegative radially symmetric solutions of the quantum Boltzmann equation are bounded from below by a Gaussian distribution, uniformly in time.</description><subject>Boltzmann transport equation</subject><subject>Bosons</subject><subject>Classical Mechanics</subject><subject>Complex Systems</subject><subject>Fluid- and Aerodynamics</subject><subject>Gaussian distribution</subject><subject>Lower bounds</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Normal distribution</subject><subject>Particle energy</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvAczSTZJPdo5b6AQsibc8hNFnZ0k3aZBexv94sK3jyMMzX887Ai9At0HugVD0kShktCIWSAFNATmdoBoIzQqXi52hGKeWkKpi6RFcp7caWcTlDq41vmxA73Hq8bjuH6_DlIn4Kg7c4L_Aq7Ie-DT7hPmCDPwbj-6HLwL4_dcZ7vDwOZgRwaPI0ZfIaXTRmn9zNb56jzfNyvXgl9fvL2-KxJlsOsicghLACcjRUCglqS0XhbFVxZxS3UpWmEcoqJktDLbOiMFAq1Zhcq8pZPkd3091DDMfBpV7vwhB9fqkZSOCqgkpkCiZqG0NK0TX6ENvOxG8NVI_e6ck7nb3To3f6lDVs0qTM-k8X_y7_L_oBqzxxFw</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Nguyen, Toan T.</creator><creator>Tran, Minh-Binh</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190101</creationdate><title>Uniform in Time Lower Bound for Solutions to a Quantum Boltzmann Equation of Bosons</title><author>Nguyen, Toan T. ; Tran, Minh-Binh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-1444d414d4f064617c045ed993ea73d678af47d7268a0d2d45a1877fad2d79ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boltzmann transport equation</topic><topic>Bosons</topic><topic>Classical Mechanics</topic><topic>Complex Systems</topic><topic>Fluid- and Aerodynamics</topic><topic>Gaussian distribution</topic><topic>Lower bounds</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Normal distribution</topic><topic>Particle energy</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Toan T.</creatorcontrib><creatorcontrib>Tran, Minh-Binh</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Toan T.</au><au>Tran, Minh-Binh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniform in Time Lower Bound for Solutions to a Quantum Boltzmann Equation of Bosons</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><stitle>Arch Rational Mech Anal</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>231</volume><issue>1</issue><spage>63</spage><epage>89</epage><pages>63-89</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><abstract>In this paper, we consider a quantum Boltzmann equation, which describes the interaction between excited atoms and a condensate. The collision integrals are taken–over energy manifolds, having the full form of the Bogoliubov dispersion law for particle energy. We prove that nonnegative radially symmetric solutions of the quantum Boltzmann equation are bounded from below by a Gaussian distribution, uniformly in time.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00205-018-1271-z</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-9527
ispartof Archive for rational mechanics and analysis, 2019-01, Vol.231 (1), p.63-89
issn 0003-9527
1432-0673
language eng
recordid cdi_proquest_journals_2161379194
source Springer Nature - Complete Springer Journals
subjects Boltzmann transport equation
Bosons
Classical Mechanics
Complex Systems
Fluid- and Aerodynamics
Gaussian distribution
Lower bounds
Mathematical analysis
Mathematical and Computational Physics
Normal distribution
Particle energy
Physics
Physics and Astronomy
Theoretical
title Uniform in Time Lower Bound for Solutions to a Quantum Boltzmann Equation of Bosons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A57%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniform%20in%20Time%20Lower%20Bound%20for%20Solutions%20to%20a%20Quantum%20Boltzmann%20Equation%20of%20Bosons&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=Nguyen,%20Toan%20T.&rft.date=2019-01-01&rft.volume=231&rft.issue=1&rft.spage=63&rft.epage=89&rft.pages=63-89&rft.issn=0003-9527&rft.eissn=1432-0673&rft_id=info:doi/10.1007/s00205-018-1271-z&rft_dat=%3Cproquest_cross%3E2161379194%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2161379194&rft_id=info:pmid/&rfr_iscdi=true