Merits of using density matrices instead of wave functions in the stationary Schrödinger equation for systems with symmetries
The stationary Schr\"odinger equation can be cast in the form \(H \rho = E \rho\), where \(H\) is the system's Hamiltonian and \(\rho\) is the system's density matrix. We explore the merits of this form of the stationary Schr\"odinger equation, which we refer to as~SSE\(_\rho\),...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-02 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Shpagina, E Uskov, F Il'in, N Lychkovskiy, O |
description | The stationary Schr\"odinger equation can be cast in the form \(H \rho = E \rho\), where \(H\) is the system's Hamiltonian and \(\rho\) is the system's density matrix. We explore the merits of this form of the stationary Schr\"odinger equation, which we refer to as~SSE\(_\rho\), applied to many-body systems with symmetries. For a nondegenerate energy level, the solution \(\rho\) of the SSE\(_\rho\) is merely a projection on the corresponding eigenvector. However, in the case of degeneracy \(\rho\) is non-unique and not necessarily pure. In fact, it can be an arbitrary mixture of the degenerate pure eigenstates. Importantly, \(\rho\) can always be chosen to respect all symmetries of the Hamiltonian, even if each pure eigenstate in the corresponding degenerate multiplet spontaneously breaks the symmetries. This and other features of the solutions of the SSE\(_\rho\) can prove helpful by easing the notations and providing an unobscured insight into the structure of the eigenstates. We work out the SSE\(_\rho\) for a general system of spins \(1/2\) with Heisenberg interactions, and address simple systems of spins \(1\). Eigenvalue problem for quantum observables other than Hamiltonian can also be formulated in terms of density matrices. As an illustration, we provide an analytical solution to the eigenproblem \({\bf S}^2 \rho=S(S+1) \rho\), where \(\bf S\) is the total spin of \(N\) spins \(1/2\), and \(\rho\) is chosen to be invariant under permutations of spins. This way we find an explicit form of projections to the invariant subspaces of \({\bf S}^2\). |
doi_str_mv | 10.48550/arxiv.1812.03056 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2160977571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2160977571</sourcerecordid><originalsourceid>FETCH-proquest_journals_21609775713</originalsourceid><addsrcrecordid>eNqNjEtOwzAURS0kpFbQBXT2JMYN_tRJGCMqJoxgXlnJS-Oqsamf3TYTlsUG2BgOYgEdXV2do8PYUvBiXWvNH0242FMhaiELrrgub9hcKiVW9VrKGVsQ7Tnnsqyk1mrOvt4w2EjgO0hk3Q5adGTjCIOJwTZIYB1FNO1knM0JoUuuida7iUDsESia6ZswwnvTh5_vNncwAB7TH4DOB6AxVwaCs419PsOAOY90z247cyBc_O8de9i8fDy_rj6DPyakuN37FFxGWylK_lRVuhLqOusX-KtYdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2160977571</pqid></control><display><type>article</type><title>Merits of using density matrices instead of wave functions in the stationary Schrödinger equation for systems with symmetries</title><source>Free E- Journals</source><creator>Shpagina, E ; Uskov, F ; Il'in, N ; Lychkovskiy, O</creator><creatorcontrib>Shpagina, E ; Uskov, F ; Il'in, N ; Lychkovskiy, O</creatorcontrib><description>The stationary Schr\"odinger equation can be cast in the form \(H \rho = E \rho\), where \(H\) is the system's Hamiltonian and \(\rho\) is the system's density matrix. We explore the merits of this form of the stationary Schr\"odinger equation, which we refer to as~SSE\(_\rho\), applied to many-body systems with symmetries. For a nondegenerate energy level, the solution \(\rho\) of the SSE\(_\rho\) is merely a projection on the corresponding eigenvector. However, in the case of degeneracy \(\rho\) is non-unique and not necessarily pure. In fact, it can be an arbitrary mixture of the degenerate pure eigenstates. Importantly, \(\rho\) can always be chosen to respect all symmetries of the Hamiltonian, even if each pure eigenstate in the corresponding degenerate multiplet spontaneously breaks the symmetries. This and other features of the solutions of the SSE\(_\rho\) can prove helpful by easing the notations and providing an unobscured insight into the structure of the eigenstates. We work out the SSE\(_\rho\) for a general system of spins \(1/2\) with Heisenberg interactions, and address simple systems of spins \(1\). Eigenvalue problem for quantum observables other than Hamiltonian can also be formulated in terms of density matrices. As an illustration, we provide an analytical solution to the eigenproblem \({\bf S}^2 \rho=S(S+1) \rho\), where \(\bf S\) is the total spin of \(N\) spins \(1/2\), and \(\rho\) is chosen to be invariant under permutations of spins. This way we find an explicit form of projections to the invariant subspaces of \({\bf S}^2\).</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1812.03056</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Density ; Eigenvalues ; Eigenvectors ; Energy levels ; Invariants ; Mathematical analysis ; Permutations ; Schrodinger equation ; Subspaces ; Sum rules ; Wave functions</subject><ispartof>arXiv.org, 2020-02</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780,27904</link.rule.ids></links><search><creatorcontrib>Shpagina, E</creatorcontrib><creatorcontrib>Uskov, F</creatorcontrib><creatorcontrib>Il'in, N</creatorcontrib><creatorcontrib>Lychkovskiy, O</creatorcontrib><title>Merits of using density matrices instead of wave functions in the stationary Schrödinger equation for systems with symmetries</title><title>arXiv.org</title><description>The stationary Schr\"odinger equation can be cast in the form \(H \rho = E \rho\), where \(H\) is the system's Hamiltonian and \(\rho\) is the system's density matrix. We explore the merits of this form of the stationary Schr\"odinger equation, which we refer to as~SSE\(_\rho\), applied to many-body systems with symmetries. For a nondegenerate energy level, the solution \(\rho\) of the SSE\(_\rho\) is merely a projection on the corresponding eigenvector. However, in the case of degeneracy \(\rho\) is non-unique and not necessarily pure. In fact, it can be an arbitrary mixture of the degenerate pure eigenstates. Importantly, \(\rho\) can always be chosen to respect all symmetries of the Hamiltonian, even if each pure eigenstate in the corresponding degenerate multiplet spontaneously breaks the symmetries. This and other features of the solutions of the SSE\(_\rho\) can prove helpful by easing the notations and providing an unobscured insight into the structure of the eigenstates. We work out the SSE\(_\rho\) for a general system of spins \(1/2\) with Heisenberg interactions, and address simple systems of spins \(1\). Eigenvalue problem for quantum observables other than Hamiltonian can also be formulated in terms of density matrices. As an illustration, we provide an analytical solution to the eigenproblem \({\bf S}^2 \rho=S(S+1) \rho\), where \(\bf S\) is the total spin of \(N\) spins \(1/2\), and \(\rho\) is chosen to be invariant under permutations of spins. This way we find an explicit form of projections to the invariant subspaces of \({\bf S}^2\).</description><subject>Density</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Energy levels</subject><subject>Invariants</subject><subject>Mathematical analysis</subject><subject>Permutations</subject><subject>Schrodinger equation</subject><subject>Subspaces</subject><subject>Sum rules</subject><subject>Wave functions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjEtOwzAURS0kpFbQBXT2JMYN_tRJGCMqJoxgXlnJS-Oqsamf3TYTlsUG2BgOYgEdXV2do8PYUvBiXWvNH0242FMhaiELrrgub9hcKiVW9VrKGVsQ7Tnnsqyk1mrOvt4w2EjgO0hk3Q5adGTjCIOJwTZIYB1FNO1knM0JoUuuida7iUDsESia6ZswwnvTh5_vNncwAB7TH4DOB6AxVwaCs419PsOAOY90z247cyBc_O8de9i8fDy_rj6DPyakuN37FFxGWylK_lRVuhLqOusX-KtYdQ</recordid><startdate>20200217</startdate><enddate>20200217</enddate><creator>Shpagina, E</creator><creator>Uskov, F</creator><creator>Il'in, N</creator><creator>Lychkovskiy, O</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200217</creationdate><title>Merits of using density matrices instead of wave functions in the stationary Schrödinger equation for systems with symmetries</title><author>Shpagina, E ; Uskov, F ; Il'in, N ; Lychkovskiy, O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21609775713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Density</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Energy levels</topic><topic>Invariants</topic><topic>Mathematical analysis</topic><topic>Permutations</topic><topic>Schrodinger equation</topic><topic>Subspaces</topic><topic>Sum rules</topic><topic>Wave functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Shpagina, E</creatorcontrib><creatorcontrib>Uskov, F</creatorcontrib><creatorcontrib>Il'in, N</creatorcontrib><creatorcontrib>Lychkovskiy, O</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shpagina, E</au><au>Uskov, F</au><au>Il'in, N</au><au>Lychkovskiy, O</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Merits of using density matrices instead of wave functions in the stationary Schrödinger equation for systems with symmetries</atitle><jtitle>arXiv.org</jtitle><date>2020-02-17</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>The stationary Schr\"odinger equation can be cast in the form \(H \rho = E \rho\), where \(H\) is the system's Hamiltonian and \(\rho\) is the system's density matrix. We explore the merits of this form of the stationary Schr\"odinger equation, which we refer to as~SSE\(_\rho\), applied to many-body systems with symmetries. For a nondegenerate energy level, the solution \(\rho\) of the SSE\(_\rho\) is merely a projection on the corresponding eigenvector. However, in the case of degeneracy \(\rho\) is non-unique and not necessarily pure. In fact, it can be an arbitrary mixture of the degenerate pure eigenstates. Importantly, \(\rho\) can always be chosen to respect all symmetries of the Hamiltonian, even if each pure eigenstate in the corresponding degenerate multiplet spontaneously breaks the symmetries. This and other features of the solutions of the SSE\(_\rho\) can prove helpful by easing the notations and providing an unobscured insight into the structure of the eigenstates. We work out the SSE\(_\rho\) for a general system of spins \(1/2\) with Heisenberg interactions, and address simple systems of spins \(1\). Eigenvalue problem for quantum observables other than Hamiltonian can also be formulated in terms of density matrices. As an illustration, we provide an analytical solution to the eigenproblem \({\bf S}^2 \rho=S(S+1) \rho\), where \(\bf S\) is the total spin of \(N\) spins \(1/2\), and \(\rho\) is chosen to be invariant under permutations of spins. This way we find an explicit form of projections to the invariant subspaces of \({\bf S}^2\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1812.03056</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2160977571 |
source | Free E- Journals |
subjects | Density Eigenvalues Eigenvectors Energy levels Invariants Mathematical analysis Permutations Schrodinger equation Subspaces Sum rules Wave functions |
title | Merits of using density matrices instead of wave functions in the stationary Schrödinger equation for systems with symmetries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A47%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Merits%20of%20using%20density%20matrices%20instead%20of%20wave%20functions%20in%20the%20stationary%20Schr%C3%B6dinger%20equation%20for%20systems%20with%20symmetries&rft.jtitle=arXiv.org&rft.au=Shpagina,%20E&rft.date=2020-02-17&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1812.03056&rft_dat=%3Cproquest%3E2160977571%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2160977571&rft_id=info:pmid/&rfr_iscdi=true |