Strong physisorption and superb thermal stability of carbon nanofibers carried Cu^sub x^O-V^sub 2^O^sub 5^ enabling the flexible and long-cycling supercapacitor
Carbon nanofibers supported the vanadium and copper bimetallic oxide composite electrode material has been developed successfully in this study, as the outstanding electrode materials in supercapacitors. In electrospunning and calcination processes, the organic salt of vanadium underwent high temper...
Gespeichert in:
Veröffentlicht in: | Journal of alloys and compounds 2019-02, Vol.775, p.872 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 872 |
container_title | Journal of alloys and compounds |
container_volume | 775 |
creator | Mu, Hongchun Bai, Jie Li, Chunping Sun, Weiyan |
description | Carbon nanofibers supported the vanadium and copper bimetallic oxide composite electrode material has been developed successfully in this study, as the outstanding electrode materials in supercapacitors. In electrospunning and calcination processes, the organic salt of vanadium underwent high temperature decomposition to form V2O5 in situ. The various ratios of CuxO-V2O5/CNFs composite electrode material were used to apply in the electrochemical performance testing through the vacuum impregnation method. Because of the copper doping, CuxO-V2O5/CNFs (10:1) composites exhibited a specific capacitance of 867.2 F g−1 at 0.5 A g−1 over a potential range of 0–0.51 V, which surpassed those of their individual counterparts (682.5 F g−1 and 507.1 F g−1 at 0.5 A g−1 for V2O5/CNFs and CuCl2/CNF, respectively). The addition of trace copper oxide greatly improves the electrochemical performance of vanadium-based carbon fibers composites. The composites also showed good cycling stability due to the unique structure of the V2O5 and synergies with copper oxide. The preparation route provided a novel strategy to synthesize composites of transition bimetallic oxide with improving electrochemical performance for applications in supercapacitors. |
doi_str_mv | 10.1016/j.jallcom.2018.10.155 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2160355684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2160355684</sourcerecordid><originalsourceid>FETCH-proquest_journals_21603556843</originalsourceid><addsrcrecordid>eNqNjk1OwzAUhC1EJcLPEZCexDrBjmvjrCsQuy5ALFPZrtM6cu1gO1JzG45KGnEAVvM0M3rfIPRIcEUw4c991UvndDhVNSaiutiMXaGCiBdarjlvrlGBm5qVggpxg25T6jHGpKGkQD8fOQZ_gOE4JZtCHLINHqTfQxoHExXko4kn6SBlqayzeYLQgZZRzTUvfeisMjFdnGjNHjZjm0YF53Zbfi1X3W4XZS0YL5WzM2z-CZ0zZ6ucWVhunlDqSS_pAtZykNrmEO_RqpMumYc_vUNPb6-fm_dyiOF7NCnv-jBGP0e7mnBMGeNiTf_X-gXd_GYF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2160355684</pqid></control><display><type>article</type><title>Strong physisorption and superb thermal stability of carbon nanofibers carried Cu^sub x^O-V^sub 2^O^sub 5^ enabling the flexible and long-cycling supercapacitor</title><source>Elsevier ScienceDirect Journals</source><creator>Mu, Hongchun ; Bai, Jie ; Li, Chunping ; Sun, Weiyan</creator><creatorcontrib>Mu, Hongchun ; Bai, Jie ; Li, Chunping ; Sun, Weiyan</creatorcontrib><description>Carbon nanofibers supported the vanadium and copper bimetallic oxide composite electrode material has been developed successfully in this study, as the outstanding electrode materials in supercapacitors. In electrospunning and calcination processes, the organic salt of vanadium underwent high temperature decomposition to form V2O5 in situ. The various ratios of CuxO-V2O5/CNFs composite electrode material were used to apply in the electrochemical performance testing through the vacuum impregnation method. Because of the copper doping, CuxO-V2O5/CNFs (10:1) composites exhibited a specific capacitance of 867.2 F g−1 at 0.5 A g−1 over a potential range of 0–0.51 V, which surpassed those of their individual counterparts (682.5 F g−1 and 507.1 F g−1 at 0.5 A g−1 for V2O5/CNFs and CuCl2/CNF, respectively). The addition of trace copper oxide greatly improves the electrochemical performance of vanadium-based carbon fibers composites. The composites also showed good cycling stability due to the unique structure of the V2O5 and synergies with copper oxide. The preparation route provided a novel strategy to synthesize composites of transition bimetallic oxide with improving electrochemical performance for applications in supercapacitors.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2018.10.155</identifier><language>eng</language><publisher>Lausanne: Elsevier BV</publisher><subject>Bimetals ; Carbon fiber reinforced plastics ; Carbon fibers ; Chemical synthesis ; Composite materials ; Copper ; Copper oxides ; Cycles ; Electrochemical analysis ; Electrode materials ; Electrodes ; High temperature ; High temperature physics ; Metal oxides ; Nanofibers ; Organic salts ; Supercapacitors ; Thermal stability ; Vanadium pentoxide</subject><ispartof>Journal of alloys and compounds, 2019-02, Vol.775, p.872</ispartof><rights>Copyright Elsevier BV Feb 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Mu, Hongchun</creatorcontrib><creatorcontrib>Bai, Jie</creatorcontrib><creatorcontrib>Li, Chunping</creatorcontrib><creatorcontrib>Sun, Weiyan</creatorcontrib><title>Strong physisorption and superb thermal stability of carbon nanofibers carried Cu^sub x^O-V^sub 2^O^sub 5^ enabling the flexible and long-cycling supercapacitor</title><title>Journal of alloys and compounds</title><description>Carbon nanofibers supported the vanadium and copper bimetallic oxide composite electrode material has been developed successfully in this study, as the outstanding electrode materials in supercapacitors. In electrospunning and calcination processes, the organic salt of vanadium underwent high temperature decomposition to form V2O5 in situ. The various ratios of CuxO-V2O5/CNFs composite electrode material were used to apply in the electrochemical performance testing through the vacuum impregnation method. Because of the copper doping, CuxO-V2O5/CNFs (10:1) composites exhibited a specific capacitance of 867.2 F g−1 at 0.5 A g−1 over a potential range of 0–0.51 V, which surpassed those of their individual counterparts (682.5 F g−1 and 507.1 F g−1 at 0.5 A g−1 for V2O5/CNFs and CuCl2/CNF, respectively). The addition of trace copper oxide greatly improves the electrochemical performance of vanadium-based carbon fibers composites. The composites also showed good cycling stability due to the unique structure of the V2O5 and synergies with copper oxide. The preparation route provided a novel strategy to synthesize composites of transition bimetallic oxide with improving electrochemical performance for applications in supercapacitors.</description><subject>Bimetals</subject><subject>Carbon fiber reinforced plastics</subject><subject>Carbon fibers</subject><subject>Chemical synthesis</subject><subject>Composite materials</subject><subject>Copper</subject><subject>Copper oxides</subject><subject>Cycles</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>High temperature</subject><subject>High temperature physics</subject><subject>Metal oxides</subject><subject>Nanofibers</subject><subject>Organic salts</subject><subject>Supercapacitors</subject><subject>Thermal stability</subject><subject>Vanadium pentoxide</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNjk1OwzAUhC1EJcLPEZCexDrBjmvjrCsQuy5ALFPZrtM6cu1gO1JzG45KGnEAVvM0M3rfIPRIcEUw4c991UvndDhVNSaiutiMXaGCiBdarjlvrlGBm5qVggpxg25T6jHGpKGkQD8fOQZ_gOE4JZtCHLINHqTfQxoHExXko4kn6SBlqayzeYLQgZZRzTUvfeisMjFdnGjNHjZjm0YF53Zbfi1X3W4XZS0YL5WzM2z-CZ0zZ6ucWVhunlDqSS_pAtZykNrmEO_RqpMumYc_vUNPb6-fm_dyiOF7NCnv-jBGP0e7mnBMGeNiTf_X-gXd_GYF</recordid><startdate>20190215</startdate><enddate>20190215</enddate><creator>Mu, Hongchun</creator><creator>Bai, Jie</creator><creator>Li, Chunping</creator><creator>Sun, Weiyan</creator><general>Elsevier BV</general><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20190215</creationdate><title>Strong physisorption and superb thermal stability of carbon nanofibers carried Cu^sub x^O-V^sub 2^O^sub 5^ enabling the flexible and long-cycling supercapacitor</title><author>Mu, Hongchun ; Bai, Jie ; Li, Chunping ; Sun, Weiyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21603556843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bimetals</topic><topic>Carbon fiber reinforced plastics</topic><topic>Carbon fibers</topic><topic>Chemical synthesis</topic><topic>Composite materials</topic><topic>Copper</topic><topic>Copper oxides</topic><topic>Cycles</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>High temperature</topic><topic>High temperature physics</topic><topic>Metal oxides</topic><topic>Nanofibers</topic><topic>Organic salts</topic><topic>Supercapacitors</topic><topic>Thermal stability</topic><topic>Vanadium pentoxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mu, Hongchun</creatorcontrib><creatorcontrib>Bai, Jie</creatorcontrib><creatorcontrib>Li, Chunping</creatorcontrib><creatorcontrib>Sun, Weiyan</creatorcontrib><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mu, Hongchun</au><au>Bai, Jie</au><au>Li, Chunping</au><au>Sun, Weiyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong physisorption and superb thermal stability of carbon nanofibers carried Cu^sub x^O-V^sub 2^O^sub 5^ enabling the flexible and long-cycling supercapacitor</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2019-02-15</date><risdate>2019</risdate><volume>775</volume><spage>872</spage><pages>872-</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>Carbon nanofibers supported the vanadium and copper bimetallic oxide composite electrode material has been developed successfully in this study, as the outstanding electrode materials in supercapacitors. In electrospunning and calcination processes, the organic salt of vanadium underwent high temperature decomposition to form V2O5 in situ. The various ratios of CuxO-V2O5/CNFs composite electrode material were used to apply in the electrochemical performance testing through the vacuum impregnation method. Because of the copper doping, CuxO-V2O5/CNFs (10:1) composites exhibited a specific capacitance of 867.2 F g−1 at 0.5 A g−1 over a potential range of 0–0.51 V, which surpassed those of their individual counterparts (682.5 F g−1 and 507.1 F g−1 at 0.5 A g−1 for V2O5/CNFs and CuCl2/CNF, respectively). The addition of trace copper oxide greatly improves the electrochemical performance of vanadium-based carbon fibers composites. The composites also showed good cycling stability due to the unique structure of the V2O5 and synergies with copper oxide. The preparation route provided a novel strategy to synthesize composites of transition bimetallic oxide with improving electrochemical performance for applications in supercapacitors.</abstract><cop>Lausanne</cop><pub>Elsevier BV</pub><doi>10.1016/j.jallcom.2018.10.155</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8388 |
ispartof | Journal of alloys and compounds, 2019-02, Vol.775, p.872 |
issn | 0925-8388 1873-4669 |
language | eng |
recordid | cdi_proquest_journals_2160355684 |
source | Elsevier ScienceDirect Journals |
subjects | Bimetals Carbon fiber reinforced plastics Carbon fibers Chemical synthesis Composite materials Copper Copper oxides Cycles Electrochemical analysis Electrode materials Electrodes High temperature High temperature physics Metal oxides Nanofibers Organic salts Supercapacitors Thermal stability Vanadium pentoxide |
title | Strong physisorption and superb thermal stability of carbon nanofibers carried Cu^sub x^O-V^sub 2^O^sub 5^ enabling the flexible and long-cycling supercapacitor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T22%3A27%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20physisorption%20and%20superb%20thermal%20stability%20of%20carbon%20nanofibers%20carried%20Cu%5Esub%20x%5EO-V%5Esub%202%5EO%5Esub%205%5E%20enabling%20the%20flexible%20and%20long-cycling%20supercapacitor&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Mu,%20Hongchun&rft.date=2019-02-15&rft.volume=775&rft.spage=872&rft.pages=872-&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2018.10.155&rft_dat=%3Cproquest%3E2160355684%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2160355684&rft_id=info:pmid/&rfr_iscdi=true |