Strong physisorption and superb thermal stability of carbon nanofibers carried Cu^sub x^O-V^sub 2^O^sub 5^ enabling the flexible and long-cycling supercapacitor

Carbon nanofibers supported the vanadium and copper bimetallic oxide composite electrode material has been developed successfully in this study, as the outstanding electrode materials in supercapacitors. In electrospunning and calcination processes, the organic salt of vanadium underwent high temper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2019-02, Vol.775, p.872
Hauptverfasser: Mu, Hongchun, Bai, Jie, Li, Chunping, Sun, Weiyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 872
container_title Journal of alloys and compounds
container_volume 775
creator Mu, Hongchun
Bai, Jie
Li, Chunping
Sun, Weiyan
description Carbon nanofibers supported the vanadium and copper bimetallic oxide composite electrode material has been developed successfully in this study, as the outstanding electrode materials in supercapacitors. In electrospunning and calcination processes, the organic salt of vanadium underwent high temperature decomposition to form V2O5 in situ. The various ratios of CuxO-V2O5/CNFs composite electrode material were used to apply in the electrochemical performance testing through the vacuum impregnation method. Because of the copper doping, CuxO-V2O5/CNFs (10:1) composites exhibited a specific capacitance of 867.2 F g−1 at 0.5 A g−1 over a potential range of 0–0.51 V, which surpassed those of their individual counterparts (682.5 F g−1 and 507.1 F g−1 at 0.5 A g−1 for V2O5/CNFs and CuCl2/CNF, respectively). The addition of trace copper oxide greatly improves the electrochemical performance of vanadium-based carbon fibers composites. The composites also showed good cycling stability due to the unique structure of the V2O5 and synergies with copper oxide. The preparation route provided a novel strategy to synthesize composites of transition bimetallic oxide with improving electrochemical performance for applications in supercapacitors.
doi_str_mv 10.1016/j.jallcom.2018.10.155
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2160355684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2160355684</sourcerecordid><originalsourceid>FETCH-proquest_journals_21603556843</originalsourceid><addsrcrecordid>eNqNjk1OwzAUhC1EJcLPEZCexDrBjmvjrCsQuy5ALFPZrtM6cu1gO1JzG45KGnEAVvM0M3rfIPRIcEUw4c991UvndDhVNSaiutiMXaGCiBdarjlvrlGBm5qVggpxg25T6jHGpKGkQD8fOQZ_gOE4JZtCHLINHqTfQxoHExXko4kn6SBlqayzeYLQgZZRzTUvfeisMjFdnGjNHjZjm0YF53Zbfi1X3W4XZS0YL5WzM2z-CZ0zZ6ucWVhunlDqSS_pAtZykNrmEO_RqpMumYc_vUNPb6-fm_dyiOF7NCnv-jBGP0e7mnBMGeNiTf_X-gXd_GYF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2160355684</pqid></control><display><type>article</type><title>Strong physisorption and superb thermal stability of carbon nanofibers carried Cu^sub x^O-V^sub 2^O^sub 5^ enabling the flexible and long-cycling supercapacitor</title><source>Elsevier ScienceDirect Journals</source><creator>Mu, Hongchun ; Bai, Jie ; Li, Chunping ; Sun, Weiyan</creator><creatorcontrib>Mu, Hongchun ; Bai, Jie ; Li, Chunping ; Sun, Weiyan</creatorcontrib><description>Carbon nanofibers supported the vanadium and copper bimetallic oxide composite electrode material has been developed successfully in this study, as the outstanding electrode materials in supercapacitors. In electrospunning and calcination processes, the organic salt of vanadium underwent high temperature decomposition to form V2O5 in situ. The various ratios of CuxO-V2O5/CNFs composite electrode material were used to apply in the electrochemical performance testing through the vacuum impregnation method. Because of the copper doping, CuxO-V2O5/CNFs (10:1) composites exhibited a specific capacitance of 867.2 F g−1 at 0.5 A g−1 over a potential range of 0–0.51 V, which surpassed those of their individual counterparts (682.5 F g−1 and 507.1 F g−1 at 0.5 A g−1 for V2O5/CNFs and CuCl2/CNF, respectively). The addition of trace copper oxide greatly improves the electrochemical performance of vanadium-based carbon fibers composites. The composites also showed good cycling stability due to the unique structure of the V2O5 and synergies with copper oxide. The preparation route provided a novel strategy to synthesize composites of transition bimetallic oxide with improving electrochemical performance for applications in supercapacitors.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2018.10.155</identifier><language>eng</language><publisher>Lausanne: Elsevier BV</publisher><subject>Bimetals ; Carbon fiber reinforced plastics ; Carbon fibers ; Chemical synthesis ; Composite materials ; Copper ; Copper oxides ; Cycles ; Electrochemical analysis ; Electrode materials ; Electrodes ; High temperature ; High temperature physics ; Metal oxides ; Nanofibers ; Organic salts ; Supercapacitors ; Thermal stability ; Vanadium pentoxide</subject><ispartof>Journal of alloys and compounds, 2019-02, Vol.775, p.872</ispartof><rights>Copyright Elsevier BV Feb 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Mu, Hongchun</creatorcontrib><creatorcontrib>Bai, Jie</creatorcontrib><creatorcontrib>Li, Chunping</creatorcontrib><creatorcontrib>Sun, Weiyan</creatorcontrib><title>Strong physisorption and superb thermal stability of carbon nanofibers carried Cu^sub x^O-V^sub 2^O^sub 5^ enabling the flexible and long-cycling supercapacitor</title><title>Journal of alloys and compounds</title><description>Carbon nanofibers supported the vanadium and copper bimetallic oxide composite electrode material has been developed successfully in this study, as the outstanding electrode materials in supercapacitors. In electrospunning and calcination processes, the organic salt of vanadium underwent high temperature decomposition to form V2O5 in situ. The various ratios of CuxO-V2O5/CNFs composite electrode material were used to apply in the electrochemical performance testing through the vacuum impregnation method. Because of the copper doping, CuxO-V2O5/CNFs (10:1) composites exhibited a specific capacitance of 867.2 F g−1 at 0.5 A g−1 over a potential range of 0–0.51 V, which surpassed those of their individual counterparts (682.5 F g−1 and 507.1 F g−1 at 0.5 A g−1 for V2O5/CNFs and CuCl2/CNF, respectively). The addition of trace copper oxide greatly improves the electrochemical performance of vanadium-based carbon fibers composites. The composites also showed good cycling stability due to the unique structure of the V2O5 and synergies with copper oxide. The preparation route provided a novel strategy to synthesize composites of transition bimetallic oxide with improving electrochemical performance for applications in supercapacitors.</description><subject>Bimetals</subject><subject>Carbon fiber reinforced plastics</subject><subject>Carbon fibers</subject><subject>Chemical synthesis</subject><subject>Composite materials</subject><subject>Copper</subject><subject>Copper oxides</subject><subject>Cycles</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>High temperature</subject><subject>High temperature physics</subject><subject>Metal oxides</subject><subject>Nanofibers</subject><subject>Organic salts</subject><subject>Supercapacitors</subject><subject>Thermal stability</subject><subject>Vanadium pentoxide</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNjk1OwzAUhC1EJcLPEZCexDrBjmvjrCsQuy5ALFPZrtM6cu1gO1JzG45KGnEAVvM0M3rfIPRIcEUw4c991UvndDhVNSaiutiMXaGCiBdarjlvrlGBm5qVggpxg25T6jHGpKGkQD8fOQZ_gOE4JZtCHLINHqTfQxoHExXko4kn6SBlqayzeYLQgZZRzTUvfeisMjFdnGjNHjZjm0YF53Zbfi1X3W4XZS0YL5WzM2z-CZ0zZ6ucWVhunlDqSS_pAtZykNrmEO_RqpMumYc_vUNPb6-fm_dyiOF7NCnv-jBGP0e7mnBMGeNiTf_X-gXd_GYF</recordid><startdate>20190215</startdate><enddate>20190215</enddate><creator>Mu, Hongchun</creator><creator>Bai, Jie</creator><creator>Li, Chunping</creator><creator>Sun, Weiyan</creator><general>Elsevier BV</general><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20190215</creationdate><title>Strong physisorption and superb thermal stability of carbon nanofibers carried Cu^sub x^O-V^sub 2^O^sub 5^ enabling the flexible and long-cycling supercapacitor</title><author>Mu, Hongchun ; Bai, Jie ; Li, Chunping ; Sun, Weiyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21603556843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bimetals</topic><topic>Carbon fiber reinforced plastics</topic><topic>Carbon fibers</topic><topic>Chemical synthesis</topic><topic>Composite materials</topic><topic>Copper</topic><topic>Copper oxides</topic><topic>Cycles</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>High temperature</topic><topic>High temperature physics</topic><topic>Metal oxides</topic><topic>Nanofibers</topic><topic>Organic salts</topic><topic>Supercapacitors</topic><topic>Thermal stability</topic><topic>Vanadium pentoxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mu, Hongchun</creatorcontrib><creatorcontrib>Bai, Jie</creatorcontrib><creatorcontrib>Li, Chunping</creatorcontrib><creatorcontrib>Sun, Weiyan</creatorcontrib><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mu, Hongchun</au><au>Bai, Jie</au><au>Li, Chunping</au><au>Sun, Weiyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong physisorption and superb thermal stability of carbon nanofibers carried Cu^sub x^O-V^sub 2^O^sub 5^ enabling the flexible and long-cycling supercapacitor</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2019-02-15</date><risdate>2019</risdate><volume>775</volume><spage>872</spage><pages>872-</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>Carbon nanofibers supported the vanadium and copper bimetallic oxide composite electrode material has been developed successfully in this study, as the outstanding electrode materials in supercapacitors. In electrospunning and calcination processes, the organic salt of vanadium underwent high temperature decomposition to form V2O5 in situ. The various ratios of CuxO-V2O5/CNFs composite electrode material were used to apply in the electrochemical performance testing through the vacuum impregnation method. Because of the copper doping, CuxO-V2O5/CNFs (10:1) composites exhibited a specific capacitance of 867.2 F g−1 at 0.5 A g−1 over a potential range of 0–0.51 V, which surpassed those of their individual counterparts (682.5 F g−1 and 507.1 F g−1 at 0.5 A g−1 for V2O5/CNFs and CuCl2/CNF, respectively). The addition of trace copper oxide greatly improves the electrochemical performance of vanadium-based carbon fibers composites. The composites also showed good cycling stability due to the unique structure of the V2O5 and synergies with copper oxide. The preparation route provided a novel strategy to synthesize composites of transition bimetallic oxide with improving electrochemical performance for applications in supercapacitors.</abstract><cop>Lausanne</cop><pub>Elsevier BV</pub><doi>10.1016/j.jallcom.2018.10.155</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2019-02, Vol.775, p.872
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2160355684
source Elsevier ScienceDirect Journals
subjects Bimetals
Carbon fiber reinforced plastics
Carbon fibers
Chemical synthesis
Composite materials
Copper
Copper oxides
Cycles
Electrochemical analysis
Electrode materials
Electrodes
High temperature
High temperature physics
Metal oxides
Nanofibers
Organic salts
Supercapacitors
Thermal stability
Vanadium pentoxide
title Strong physisorption and superb thermal stability of carbon nanofibers carried Cu^sub x^O-V^sub 2^O^sub 5^ enabling the flexible and long-cycling supercapacitor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T22%3A27%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20physisorption%20and%20superb%20thermal%20stability%20of%20carbon%20nanofibers%20carried%20Cu%5Esub%20x%5EO-V%5Esub%202%5EO%5Esub%205%5E%20enabling%20the%20flexible%20and%20long-cycling%20supercapacitor&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Mu,%20Hongchun&rft.date=2019-02-15&rft.volume=775&rft.spage=872&rft.pages=872-&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2018.10.155&rft_dat=%3Cproquest%3E2160355684%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2160355684&rft_id=info:pmid/&rfr_iscdi=true