From high pressure radial collapse to graphene ribbon formation in triple-wall carbon nanotubes

The radial stability and the irreversible transformation of triple-wall carbon nanotubes (TWCNTs) bundles are investigated at high pressure conditions both experimentally and theoretically (exp. up 72 GPa). The tubes having a mean internal diameter of 0.83nm and graphite-like intertube distance, sho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2019-01, Vol.141, p.568-579
Hauptverfasser: Silva-Santos, S.D., Alencar, R.S., Aguiar, A.L., Kim, Y.A., Muramatsu, H., Endo, M., Blanchard, N.P., San-Miguel, A., Souza Filho, A.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 579
container_issue
container_start_page 568
container_title Carbon (New York)
container_volume 141
creator Silva-Santos, S.D.
Alencar, R.S.
Aguiar, A.L.
Kim, Y.A.
Muramatsu, H.
Endo, M.
Blanchard, N.P.
San-Miguel, A.
Souza Filho, A.G.
description The radial stability and the irreversible transformation of triple-wall carbon nanotubes (TWCNTs) bundles are investigated at high pressure conditions both experimentally and theoretically (exp. up 72 GPa). The tubes having a mean internal diameter of 0.83nm and graphite-like intertube distance, show an onset of the radial collapse evidenced by the evolution of optical phonons. The nanotube collapse onset is observed at ∼22 GPa completes for the two external tubes at ∼29 GPa, however the innermost tube remains stable up to ∼37 GPa. Molecular dynamic calculations performed on smaller diameter TWCNTs bundles, as a model system, confirmed the multiple-stage pressure-induced collapse process. An analytical expression for the collapse pressure of carbon nanotubes having an arbitrary number of walls is proposed. Our experiments and modelling show that for pressures beyond ∼ 60 GPa an irreversible structural transformation of TWCNTs takes place. Ex situ transmission electron microscopy characterization on the recovered sample from 72 GPa revealed the mechanical failure of carbon nanotubes which evolve towards ribbon-like structures as corroborated by Raman spectroscopy. Modelling the tubes evolution at high pressure and high temperature showed the formation of new structures ranging from ribbon-like to graphite-like with either different degrees of amorphization or sp3 interlinking. [Display omitted]
doi_str_mv 10.1016/j.carbon.2018.09.076
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2159932826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622318308923</els_id><sourcerecordid>2159932826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-b69231a211a39cf42f29e6406a17ed910ec868784d6354a024c34543b3b258763</originalsourceid><addsrcrecordid>eNp9UDtPwzAQthBIlMI_YLDEnOBXHHtBQhUFpEosMFuOc2kdpXGwExD_nrRlZro73fe47xC6pSSnhMr7Nnc2VqHPGaEqJzonpTxDC6pKnnGl6TlaEEJUJhnjl-gqpXYehaJigcw6hj3e-e0ODxFSmiLgaGtvO-xC19khAR4D3kY77KCfd76ajXAT4t6Ofu58j8fohw6yb9vNpOMhuLd9GKcK0jW6aGyX4OavLtHH-ul99ZJt3p5fV4-bzAlCxqySmnFqGaWWa9cI1jANUhBpaQm1pgSckqpUopa8EJYw4bgoBK94xQpVSr5EdyfdIYbPCdJo2jDFfrY0jBZac6bYASVOKBdDShEaM0S_t_HHUGIOrzStOSUwh1caog05ij-caDAn-PIQTXIeege1j-BGUwf_v8AvB9p-VA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159932826</pqid></control><display><type>article</type><title>From high pressure radial collapse to graphene ribbon formation in triple-wall carbon nanotubes</title><source>Elsevier ScienceDirect Journals</source><creator>Silva-Santos, S.D. ; Alencar, R.S. ; Aguiar, A.L. ; Kim, Y.A. ; Muramatsu, H. ; Endo, M. ; Blanchard, N.P. ; San-Miguel, A. ; Souza Filho, A.G.</creator><creatorcontrib>Silva-Santos, S.D. ; Alencar, R.S. ; Aguiar, A.L. ; Kim, Y.A. ; Muramatsu, H. ; Endo, M. ; Blanchard, N.P. ; San-Miguel, A. ; Souza Filho, A.G.</creatorcontrib><description>The radial stability and the irreversible transformation of triple-wall carbon nanotubes (TWCNTs) bundles are investigated at high pressure conditions both experimentally and theoretically (exp. up 72 GPa). The tubes having a mean internal diameter of 0.83nm and graphite-like intertube distance, show an onset of the radial collapse evidenced by the evolution of optical phonons. The nanotube collapse onset is observed at ∼22 GPa completes for the two external tubes at ∼29 GPa, however the innermost tube remains stable up to ∼37 GPa. Molecular dynamic calculations performed on smaller diameter TWCNTs bundles, as a model system, confirmed the multiple-stage pressure-induced collapse process. An analytical expression for the collapse pressure of carbon nanotubes having an arbitrary number of walls is proposed. Our experiments and modelling show that for pressures beyond ∼ 60 GPa an irreversible structural transformation of TWCNTs takes place. Ex situ transmission electron microscopy characterization on the recovered sample from 72 GPa revealed the mechanical failure of carbon nanotubes which evolve towards ribbon-like structures as corroborated by Raman spectroscopy. Modelling the tubes evolution at high pressure and high temperature showed the formation of new structures ranging from ribbon-like to graphite-like with either different degrees of amorphization or sp3 interlinking. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2018.09.076</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Amorphization ; Bundles ; Carbon ; Carbon nanotubes ; Collapse ; Evolution ; Graphene ; Graphite ; High pressure ; High temperature ; High temperature physics ; Irreversible transformation ; Modelling ; Molecular dynamics ; Nanotubes ; Phonons ; Raman spectroscopy ; Transformations ; Transmission electron microscopy ; triple-wall carbon nanotubes ; Tubes</subject><ispartof>Carbon (New York), 2019-01, Vol.141, p.568-579</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-b69231a211a39cf42f29e6406a17ed910ec868784d6354a024c34543b3b258763</citedby><cites>FETCH-LOGICAL-c400t-b69231a211a39cf42f29e6406a17ed910ec868784d6354a024c34543b3b258763</cites><orcidid>0000-0003-3802-1168 ; 0000-0001-8369-0251</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0008622318308923$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Silva-Santos, S.D.</creatorcontrib><creatorcontrib>Alencar, R.S.</creatorcontrib><creatorcontrib>Aguiar, A.L.</creatorcontrib><creatorcontrib>Kim, Y.A.</creatorcontrib><creatorcontrib>Muramatsu, H.</creatorcontrib><creatorcontrib>Endo, M.</creatorcontrib><creatorcontrib>Blanchard, N.P.</creatorcontrib><creatorcontrib>San-Miguel, A.</creatorcontrib><creatorcontrib>Souza Filho, A.G.</creatorcontrib><title>From high pressure radial collapse to graphene ribbon formation in triple-wall carbon nanotubes</title><title>Carbon (New York)</title><description>The radial stability and the irreversible transformation of triple-wall carbon nanotubes (TWCNTs) bundles are investigated at high pressure conditions both experimentally and theoretically (exp. up 72 GPa). The tubes having a mean internal diameter of 0.83nm and graphite-like intertube distance, show an onset of the radial collapse evidenced by the evolution of optical phonons. The nanotube collapse onset is observed at ∼22 GPa completes for the two external tubes at ∼29 GPa, however the innermost tube remains stable up to ∼37 GPa. Molecular dynamic calculations performed on smaller diameter TWCNTs bundles, as a model system, confirmed the multiple-stage pressure-induced collapse process. An analytical expression for the collapse pressure of carbon nanotubes having an arbitrary number of walls is proposed. Our experiments and modelling show that for pressures beyond ∼ 60 GPa an irreversible structural transformation of TWCNTs takes place. Ex situ transmission electron microscopy characterization on the recovered sample from 72 GPa revealed the mechanical failure of carbon nanotubes which evolve towards ribbon-like structures as corroborated by Raman spectroscopy. Modelling the tubes evolution at high pressure and high temperature showed the formation of new structures ranging from ribbon-like to graphite-like with either different degrees of amorphization or sp3 interlinking. [Display omitted]</description><subject>Amorphization</subject><subject>Bundles</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Collapse</subject><subject>Evolution</subject><subject>Graphene</subject><subject>Graphite</subject><subject>High pressure</subject><subject>High temperature</subject><subject>High temperature physics</subject><subject>Irreversible transformation</subject><subject>Modelling</subject><subject>Molecular dynamics</subject><subject>Nanotubes</subject><subject>Phonons</subject><subject>Raman spectroscopy</subject><subject>Transformations</subject><subject>Transmission electron microscopy</subject><subject>triple-wall carbon nanotubes</subject><subject>Tubes</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UDtPwzAQthBIlMI_YLDEnOBXHHtBQhUFpEosMFuOc2kdpXGwExD_nrRlZro73fe47xC6pSSnhMr7Nnc2VqHPGaEqJzonpTxDC6pKnnGl6TlaEEJUJhnjl-gqpXYehaJigcw6hj3e-e0ODxFSmiLgaGtvO-xC19khAR4D3kY77KCfd76ajXAT4t6Ofu58j8fohw6yb9vNpOMhuLd9GKcK0jW6aGyX4OavLtHH-ul99ZJt3p5fV4-bzAlCxqySmnFqGaWWa9cI1jANUhBpaQm1pgSckqpUopa8EJYw4bgoBK94xQpVSr5EdyfdIYbPCdJo2jDFfrY0jBZac6bYASVOKBdDShEaM0S_t_HHUGIOrzStOSUwh1caog05ij-caDAn-PIQTXIeege1j-BGUwf_v8AvB9p-VA</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Silva-Santos, S.D.</creator><creator>Alencar, R.S.</creator><creator>Aguiar, A.L.</creator><creator>Kim, Y.A.</creator><creator>Muramatsu, H.</creator><creator>Endo, M.</creator><creator>Blanchard, N.P.</creator><creator>San-Miguel, A.</creator><creator>Souza Filho, A.G.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-3802-1168</orcidid><orcidid>https://orcid.org/0000-0001-8369-0251</orcidid></search><sort><creationdate>201901</creationdate><title>From high pressure radial collapse to graphene ribbon formation in triple-wall carbon nanotubes</title><author>Silva-Santos, S.D. ; Alencar, R.S. ; Aguiar, A.L. ; Kim, Y.A. ; Muramatsu, H. ; Endo, M. ; Blanchard, N.P. ; San-Miguel, A. ; Souza Filho, A.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-b69231a211a39cf42f29e6406a17ed910ec868784d6354a024c34543b3b258763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amorphization</topic><topic>Bundles</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Collapse</topic><topic>Evolution</topic><topic>Graphene</topic><topic>Graphite</topic><topic>High pressure</topic><topic>High temperature</topic><topic>High temperature physics</topic><topic>Irreversible transformation</topic><topic>Modelling</topic><topic>Molecular dynamics</topic><topic>Nanotubes</topic><topic>Phonons</topic><topic>Raman spectroscopy</topic><topic>Transformations</topic><topic>Transmission electron microscopy</topic><topic>triple-wall carbon nanotubes</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva-Santos, S.D.</creatorcontrib><creatorcontrib>Alencar, R.S.</creatorcontrib><creatorcontrib>Aguiar, A.L.</creatorcontrib><creatorcontrib>Kim, Y.A.</creatorcontrib><creatorcontrib>Muramatsu, H.</creatorcontrib><creatorcontrib>Endo, M.</creatorcontrib><creatorcontrib>Blanchard, N.P.</creatorcontrib><creatorcontrib>San-Miguel, A.</creatorcontrib><creatorcontrib>Souza Filho, A.G.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva-Santos, S.D.</au><au>Alencar, R.S.</au><au>Aguiar, A.L.</au><au>Kim, Y.A.</au><au>Muramatsu, H.</au><au>Endo, M.</au><au>Blanchard, N.P.</au><au>San-Miguel, A.</au><au>Souza Filho, A.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From high pressure radial collapse to graphene ribbon formation in triple-wall carbon nanotubes</atitle><jtitle>Carbon (New York)</jtitle><date>2019-01</date><risdate>2019</risdate><volume>141</volume><spage>568</spage><epage>579</epage><pages>568-579</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>The radial stability and the irreversible transformation of triple-wall carbon nanotubes (TWCNTs) bundles are investigated at high pressure conditions both experimentally and theoretically (exp. up 72 GPa). The tubes having a mean internal diameter of 0.83nm and graphite-like intertube distance, show an onset of the radial collapse evidenced by the evolution of optical phonons. The nanotube collapse onset is observed at ∼22 GPa completes for the two external tubes at ∼29 GPa, however the innermost tube remains stable up to ∼37 GPa. Molecular dynamic calculations performed on smaller diameter TWCNTs bundles, as a model system, confirmed the multiple-stage pressure-induced collapse process. An analytical expression for the collapse pressure of carbon nanotubes having an arbitrary number of walls is proposed. Our experiments and modelling show that for pressures beyond ∼ 60 GPa an irreversible structural transformation of TWCNTs takes place. Ex situ transmission electron microscopy characterization on the recovered sample from 72 GPa revealed the mechanical failure of carbon nanotubes which evolve towards ribbon-like structures as corroborated by Raman spectroscopy. Modelling the tubes evolution at high pressure and high temperature showed the formation of new structures ranging from ribbon-like to graphite-like with either different degrees of amorphization or sp3 interlinking. [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2018.09.076</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3802-1168</orcidid><orcidid>https://orcid.org/0000-0001-8369-0251</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2019-01, Vol.141, p.568-579
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_journals_2159932826
source Elsevier ScienceDirect Journals
subjects Amorphization
Bundles
Carbon
Carbon nanotubes
Collapse
Evolution
Graphene
Graphite
High pressure
High temperature
High temperature physics
Irreversible transformation
Modelling
Molecular dynamics
Nanotubes
Phonons
Raman spectroscopy
Transformations
Transmission electron microscopy
triple-wall carbon nanotubes
Tubes
title From high pressure radial collapse to graphene ribbon formation in triple-wall carbon nanotubes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A21%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20high%20pressure%20radial%20collapse%20to%20graphene%20ribbon%20formation%20in%20triple-wall%20carbon%20nanotubes&rft.jtitle=Carbon%20(New%20York)&rft.au=Silva-Santos,%20S.D.&rft.date=2019-01&rft.volume=141&rft.spage=568&rft.epage=579&rft.pages=568-579&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2018.09.076&rft_dat=%3Cproquest_cross%3E2159932826%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2159932826&rft_id=info:pmid/&rft_els_id=S0008622318308923&rfr_iscdi=true