A Bayesian non-parametric clustering approach for semi-supervised Structural Health Monitoring
•A Dirichlet Process model is developed for Bayesian clustering of SHM data.•This online methodology allows decision making without pre-collecting training data.•Random projection successfully allows unsupervised online dimensionality reduction. A key challenge in Structural Health Monitoring (SHM)...
Gespeichert in:
Veröffentlicht in: | Mechanical systems and signal processing 2019-03, Vol.119, p.100-119 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 119 |
---|---|
container_issue | |
container_start_page | 100 |
container_title | Mechanical systems and signal processing |
container_volume | 119 |
creator | Rogers, T.J. Worden, K. Fuentes, R. Dervilis, N. Tygesen, U.T. Cross, E.J. |
description | •A Dirichlet Process model is developed for Bayesian clustering of SHM data.•This online methodology allows decision making without pre-collecting training data.•Random projection successfully allows unsupervised online dimensionality reduction.
A key challenge in Structural Health Monitoring (SHM) is the lack of availability of data from a full range of changing operational and damage conditions, with which to train an identification/classification algorithm. This paper presents a framework based on Bayesian non-parametric clustering, in particular Dirichlet Process (DP) mixture models, for performing SHM tasks in a semi-supervised manner, including an online feature extraction method. Previously, methods applied for SHM of structures in operation, such as bridges, have required at least a year’s worth of data before any inferences on performance or structural condition can be made. The method introduced here avoids the need for training data to be collected before inference can begin and increases in robustness as more data are added online. The method is demonstrated on two datasets; one from a laboratory test, the other from a full scale test on civil infrastructure. Results show very good classification accuracy and the ability to incorporate information online (e.g. regarding environmental changes). |
doi_str_mv | 10.1016/j.ymssp.2018.09.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2159931787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S088832701830623X</els_id><sourcerecordid>2159931787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-3157e63ccca2c08cfc8202487bd922ed45fa7e611f034c1b715c5deba44fc8563</originalsourceid><addsrcrecordid>eNp9kD1PwzAQQC0EEqXwC1gsMSecne-BoVRAkYoYgBXLvVyoo3xhO5X670kpM5OX9-7Oj7FrAaEAkd7W4b51bggliDyEIgQRnbCZgCINhBTpKZtBnudBJDM4ZxfO1QBQxJDO2OeC3-s9OaM73vVdMGirW_LWIMdmdJ6s6b64Hgbba9zyqrfcUWsCNw5kd8ZRyd-8HdGPVjd8RbrxW_7Sd8b3B_OSnVW6cXT1987Zx-PD-3IVrF-fnpeLdYCxjH0QiSSjNEJELRFyrDCXIOM825SFlFTGSaUnQIgKohjFJhMJJiVtdBxPaJJGc3ZznDvd-T2S86ruR9tNK5UUSVFEIsuziYqOFNreOUuVGqxptd0rAeoQUtXqN6Q6hFRQqCnkZN0dLZo-sDNklUNDHVJpLKFXZW_-9X8Amn1_Lg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159931787</pqid></control><display><type>article</type><title>A Bayesian non-parametric clustering approach for semi-supervised Structural Health Monitoring</title><source>Elsevier ScienceDirect Journals</source><creator>Rogers, T.J. ; Worden, K. ; Fuentes, R. ; Dervilis, N. ; Tygesen, U.T. ; Cross, E.J.</creator><creatorcontrib>Rogers, T.J. ; Worden, K. ; Fuentes, R. ; Dervilis, N. ; Tygesen, U.T. ; Cross, E.J.</creatorcontrib><description>•A Dirichlet Process model is developed for Bayesian clustering of SHM data.•This online methodology allows decision making without pre-collecting training data.•Random projection successfully allows unsupervised online dimensionality reduction.
A key challenge in Structural Health Monitoring (SHM) is the lack of availability of data from a full range of changing operational and damage conditions, with which to train an identification/classification algorithm. This paper presents a framework based on Bayesian non-parametric clustering, in particular Dirichlet Process (DP) mixture models, for performing SHM tasks in a semi-supervised manner, including an online feature extraction method. Previously, methods applied for SHM of structures in operation, such as bridges, have required at least a year’s worth of data before any inferences on performance or structural condition can be made. The method introduced here avoids the need for training data to be collected before inference can begin and increases in robustness as more data are added online. The method is demonstrated on two datasets; one from a laboratory test, the other from a full scale test on civil infrastructure. Results show very good classification accuracy and the ability to incorporate information online (e.g. regarding environmental changes).</description><identifier>ISSN: 0888-3270</identifier><identifier>EISSN: 1096-1216</identifier><identifier>DOI: 10.1016/j.ymssp.2018.09.013</identifier><language>eng</language><publisher>Berlin: Elsevier Ltd</publisher><subject>Algorithms ; Bayesian analysis ; Bayesian methods ; Classification ; Clustering ; Damage detection ; Dirichlet problem ; Feature extraction ; Full scale tests ; Laboratory tests ; Monitoring systems ; Nonparametric statistics ; Parameter estimation ; Semi-supervised learning ; Structural engineering ; Structural health monitoring</subject><ispartof>Mechanical systems and signal processing, 2019-03, Vol.119, p.100-119</ispartof><rights>2018 The Authors</rights><rights>Copyright Elsevier BV Mar 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-3157e63ccca2c08cfc8202487bd922ed45fa7e611f034c1b715c5deba44fc8563</citedby><cites>FETCH-LOGICAL-c424t-3157e63ccca2c08cfc8202487bd922ed45fa7e611f034c1b715c5deba44fc8563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S088832701830623X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Rogers, T.J.</creatorcontrib><creatorcontrib>Worden, K.</creatorcontrib><creatorcontrib>Fuentes, R.</creatorcontrib><creatorcontrib>Dervilis, N.</creatorcontrib><creatorcontrib>Tygesen, U.T.</creatorcontrib><creatorcontrib>Cross, E.J.</creatorcontrib><title>A Bayesian non-parametric clustering approach for semi-supervised Structural Health Monitoring</title><title>Mechanical systems and signal processing</title><description>•A Dirichlet Process model is developed for Bayesian clustering of SHM data.•This online methodology allows decision making without pre-collecting training data.•Random projection successfully allows unsupervised online dimensionality reduction.
A key challenge in Structural Health Monitoring (SHM) is the lack of availability of data from a full range of changing operational and damage conditions, with which to train an identification/classification algorithm. This paper presents a framework based on Bayesian non-parametric clustering, in particular Dirichlet Process (DP) mixture models, for performing SHM tasks in a semi-supervised manner, including an online feature extraction method. Previously, methods applied for SHM of structures in operation, such as bridges, have required at least a year’s worth of data before any inferences on performance or structural condition can be made. The method introduced here avoids the need for training data to be collected before inference can begin and increases in robustness as more data are added online. The method is demonstrated on two datasets; one from a laboratory test, the other from a full scale test on civil infrastructure. Results show very good classification accuracy and the ability to incorporate information online (e.g. regarding environmental changes).</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Bayesian methods</subject><subject>Classification</subject><subject>Clustering</subject><subject>Damage detection</subject><subject>Dirichlet problem</subject><subject>Feature extraction</subject><subject>Full scale tests</subject><subject>Laboratory tests</subject><subject>Monitoring systems</subject><subject>Nonparametric statistics</subject><subject>Parameter estimation</subject><subject>Semi-supervised learning</subject><subject>Structural engineering</subject><subject>Structural health monitoring</subject><issn>0888-3270</issn><issn>1096-1216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQQC0EEqXwC1gsMSecne-BoVRAkYoYgBXLvVyoo3xhO5X670kpM5OX9-7Oj7FrAaEAkd7W4b51bggliDyEIgQRnbCZgCINhBTpKZtBnudBJDM4ZxfO1QBQxJDO2OeC3-s9OaM73vVdMGirW_LWIMdmdJ6s6b64Hgbba9zyqrfcUWsCNw5kd8ZRyd-8HdGPVjd8RbrxW_7Sd8b3B_OSnVW6cXT1987Zx-PD-3IVrF-fnpeLdYCxjH0QiSSjNEJELRFyrDCXIOM825SFlFTGSaUnQIgKohjFJhMJJiVtdBxPaJJGc3ZznDvd-T2S86ruR9tNK5UUSVFEIsuziYqOFNreOUuVGqxptd0rAeoQUtXqN6Q6hFRQqCnkZN0dLZo-sDNklUNDHVJpLKFXZW_-9X8Amn1_Lg</recordid><startdate>20190315</startdate><enddate>20190315</enddate><creator>Rogers, T.J.</creator><creator>Worden, K.</creator><creator>Fuentes, R.</creator><creator>Dervilis, N.</creator><creator>Tygesen, U.T.</creator><creator>Cross, E.J.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190315</creationdate><title>A Bayesian non-parametric clustering approach for semi-supervised Structural Health Monitoring</title><author>Rogers, T.J. ; Worden, K. ; Fuentes, R. ; Dervilis, N. ; Tygesen, U.T. ; Cross, E.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-3157e63ccca2c08cfc8202487bd922ed45fa7e611f034c1b715c5deba44fc8563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Bayesian methods</topic><topic>Classification</topic><topic>Clustering</topic><topic>Damage detection</topic><topic>Dirichlet problem</topic><topic>Feature extraction</topic><topic>Full scale tests</topic><topic>Laboratory tests</topic><topic>Monitoring systems</topic><topic>Nonparametric statistics</topic><topic>Parameter estimation</topic><topic>Semi-supervised learning</topic><topic>Structural engineering</topic><topic>Structural health monitoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rogers, T.J.</creatorcontrib><creatorcontrib>Worden, K.</creatorcontrib><creatorcontrib>Fuentes, R.</creatorcontrib><creatorcontrib>Dervilis, N.</creatorcontrib><creatorcontrib>Tygesen, U.T.</creatorcontrib><creatorcontrib>Cross, E.J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mechanical systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rogers, T.J.</au><au>Worden, K.</au><au>Fuentes, R.</au><au>Dervilis, N.</au><au>Tygesen, U.T.</au><au>Cross, E.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian non-parametric clustering approach for semi-supervised Structural Health Monitoring</atitle><jtitle>Mechanical systems and signal processing</jtitle><date>2019-03-15</date><risdate>2019</risdate><volume>119</volume><spage>100</spage><epage>119</epage><pages>100-119</pages><issn>0888-3270</issn><eissn>1096-1216</eissn><abstract>•A Dirichlet Process model is developed for Bayesian clustering of SHM data.•This online methodology allows decision making without pre-collecting training data.•Random projection successfully allows unsupervised online dimensionality reduction.
A key challenge in Structural Health Monitoring (SHM) is the lack of availability of data from a full range of changing operational and damage conditions, with which to train an identification/classification algorithm. This paper presents a framework based on Bayesian non-parametric clustering, in particular Dirichlet Process (DP) mixture models, for performing SHM tasks in a semi-supervised manner, including an online feature extraction method. Previously, methods applied for SHM of structures in operation, such as bridges, have required at least a year’s worth of data before any inferences on performance or structural condition can be made. The method introduced here avoids the need for training data to be collected before inference can begin and increases in robustness as more data are added online. The method is demonstrated on two datasets; one from a laboratory test, the other from a full scale test on civil infrastructure. Results show very good classification accuracy and the ability to incorporate information online (e.g. regarding environmental changes).</abstract><cop>Berlin</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ymssp.2018.09.013</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-3270 |
ispartof | Mechanical systems and signal processing, 2019-03, Vol.119, p.100-119 |
issn | 0888-3270 1096-1216 |
language | eng |
recordid | cdi_proquest_journals_2159931787 |
source | Elsevier ScienceDirect Journals |
subjects | Algorithms Bayesian analysis Bayesian methods Classification Clustering Damage detection Dirichlet problem Feature extraction Full scale tests Laboratory tests Monitoring systems Nonparametric statistics Parameter estimation Semi-supervised learning Structural engineering Structural health monitoring |
title | A Bayesian non-parametric clustering approach for semi-supervised Structural Health Monitoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A06%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20non-parametric%20clustering%20approach%20for%20semi-supervised%20Structural%20Health%20Monitoring&rft.jtitle=Mechanical%20systems%20and%20signal%20processing&rft.au=Rogers,%20T.J.&rft.date=2019-03-15&rft.volume=119&rft.spage=100&rft.epage=119&rft.pages=100-119&rft.issn=0888-3270&rft.eissn=1096-1216&rft_id=info:doi/10.1016/j.ymssp.2018.09.013&rft_dat=%3Cproquest_cross%3E2159931787%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2159931787&rft_id=info:pmid/&rft_els_id=S088832701830623X&rfr_iscdi=true |