A Bayesian non-parametric clustering approach for semi-supervised Structural Health Monitoring

•A Dirichlet Process model is developed for Bayesian clustering of SHM data.•This online methodology allows decision making without pre-collecting training data.•Random projection successfully allows unsupervised online dimensionality reduction. A key challenge in Structural Health Monitoring (SHM)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanical systems and signal processing 2019-03, Vol.119, p.100-119
Hauptverfasser: Rogers, T.J., Worden, K., Fuentes, R., Dervilis, N., Tygesen, U.T., Cross, E.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 119
container_issue
container_start_page 100
container_title Mechanical systems and signal processing
container_volume 119
creator Rogers, T.J.
Worden, K.
Fuentes, R.
Dervilis, N.
Tygesen, U.T.
Cross, E.J.
description •A Dirichlet Process model is developed for Bayesian clustering of SHM data.•This online methodology allows decision making without pre-collecting training data.•Random projection successfully allows unsupervised online dimensionality reduction. A key challenge in Structural Health Monitoring (SHM) is the lack of availability of data from a full range of changing operational and damage conditions, with which to train an identification/classification algorithm. This paper presents a framework based on Bayesian non-parametric clustering, in particular Dirichlet Process (DP) mixture models, for performing SHM tasks in a semi-supervised manner, including an online feature extraction method. Previously, methods applied for SHM of structures in operation, such as bridges, have required at least a year’s worth of data before any inferences on performance or structural condition can be made. The method introduced here avoids the need for training data to be collected before inference can begin and increases in robustness as more data are added online. The method is demonstrated on two datasets; one from a laboratory test, the other from a full scale test on civil infrastructure. Results show very good classification accuracy and the ability to incorporate information online (e.g. regarding environmental changes).
doi_str_mv 10.1016/j.ymssp.2018.09.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2159931787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S088832701830623X</els_id><sourcerecordid>2159931787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-3157e63ccca2c08cfc8202487bd922ed45fa7e611f034c1b715c5deba44fc8563</originalsourceid><addsrcrecordid>eNp9kD1PwzAQQC0EEqXwC1gsMSecne-BoVRAkYoYgBXLvVyoo3xhO5X670kpM5OX9-7Oj7FrAaEAkd7W4b51bggliDyEIgQRnbCZgCINhBTpKZtBnudBJDM4ZxfO1QBQxJDO2OeC3-s9OaM73vVdMGirW_LWIMdmdJ6s6b64Hgbba9zyqrfcUWsCNw5kd8ZRyd-8HdGPVjd8RbrxW_7Sd8b3B_OSnVW6cXT1987Zx-PD-3IVrF-fnpeLdYCxjH0QiSSjNEJELRFyrDCXIOM825SFlFTGSaUnQIgKohjFJhMJJiVtdBxPaJJGc3ZznDvd-T2S86ruR9tNK5UUSVFEIsuziYqOFNreOUuVGqxptd0rAeoQUtXqN6Q6hFRQqCnkZN0dLZo-sDNklUNDHVJpLKFXZW_-9X8Amn1_Lg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159931787</pqid></control><display><type>article</type><title>A Bayesian non-parametric clustering approach for semi-supervised Structural Health Monitoring</title><source>Elsevier ScienceDirect Journals</source><creator>Rogers, T.J. ; Worden, K. ; Fuentes, R. ; Dervilis, N. ; Tygesen, U.T. ; Cross, E.J.</creator><creatorcontrib>Rogers, T.J. ; Worden, K. ; Fuentes, R. ; Dervilis, N. ; Tygesen, U.T. ; Cross, E.J.</creatorcontrib><description>•A Dirichlet Process model is developed for Bayesian clustering of SHM data.•This online methodology allows decision making without pre-collecting training data.•Random projection successfully allows unsupervised online dimensionality reduction. A key challenge in Structural Health Monitoring (SHM) is the lack of availability of data from a full range of changing operational and damage conditions, with which to train an identification/classification algorithm. This paper presents a framework based on Bayesian non-parametric clustering, in particular Dirichlet Process (DP) mixture models, for performing SHM tasks in a semi-supervised manner, including an online feature extraction method. Previously, methods applied for SHM of structures in operation, such as bridges, have required at least a year’s worth of data before any inferences on performance or structural condition can be made. The method introduced here avoids the need for training data to be collected before inference can begin and increases in robustness as more data are added online. The method is demonstrated on two datasets; one from a laboratory test, the other from a full scale test on civil infrastructure. Results show very good classification accuracy and the ability to incorporate information online (e.g. regarding environmental changes).</description><identifier>ISSN: 0888-3270</identifier><identifier>EISSN: 1096-1216</identifier><identifier>DOI: 10.1016/j.ymssp.2018.09.013</identifier><language>eng</language><publisher>Berlin: Elsevier Ltd</publisher><subject>Algorithms ; Bayesian analysis ; Bayesian methods ; Classification ; Clustering ; Damage detection ; Dirichlet problem ; Feature extraction ; Full scale tests ; Laboratory tests ; Monitoring systems ; Nonparametric statistics ; Parameter estimation ; Semi-supervised learning ; Structural engineering ; Structural health monitoring</subject><ispartof>Mechanical systems and signal processing, 2019-03, Vol.119, p.100-119</ispartof><rights>2018 The Authors</rights><rights>Copyright Elsevier BV Mar 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-3157e63ccca2c08cfc8202487bd922ed45fa7e611f034c1b715c5deba44fc8563</citedby><cites>FETCH-LOGICAL-c424t-3157e63ccca2c08cfc8202487bd922ed45fa7e611f034c1b715c5deba44fc8563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S088832701830623X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Rogers, T.J.</creatorcontrib><creatorcontrib>Worden, K.</creatorcontrib><creatorcontrib>Fuentes, R.</creatorcontrib><creatorcontrib>Dervilis, N.</creatorcontrib><creatorcontrib>Tygesen, U.T.</creatorcontrib><creatorcontrib>Cross, E.J.</creatorcontrib><title>A Bayesian non-parametric clustering approach for semi-supervised Structural Health Monitoring</title><title>Mechanical systems and signal processing</title><description>•A Dirichlet Process model is developed for Bayesian clustering of SHM data.•This online methodology allows decision making without pre-collecting training data.•Random projection successfully allows unsupervised online dimensionality reduction. A key challenge in Structural Health Monitoring (SHM) is the lack of availability of data from a full range of changing operational and damage conditions, with which to train an identification/classification algorithm. This paper presents a framework based on Bayesian non-parametric clustering, in particular Dirichlet Process (DP) mixture models, for performing SHM tasks in a semi-supervised manner, including an online feature extraction method. Previously, methods applied for SHM of structures in operation, such as bridges, have required at least a year’s worth of data before any inferences on performance or structural condition can be made. The method introduced here avoids the need for training data to be collected before inference can begin and increases in robustness as more data are added online. The method is demonstrated on two datasets; one from a laboratory test, the other from a full scale test on civil infrastructure. Results show very good classification accuracy and the ability to incorporate information online (e.g. regarding environmental changes).</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Bayesian methods</subject><subject>Classification</subject><subject>Clustering</subject><subject>Damage detection</subject><subject>Dirichlet problem</subject><subject>Feature extraction</subject><subject>Full scale tests</subject><subject>Laboratory tests</subject><subject>Monitoring systems</subject><subject>Nonparametric statistics</subject><subject>Parameter estimation</subject><subject>Semi-supervised learning</subject><subject>Structural engineering</subject><subject>Structural health monitoring</subject><issn>0888-3270</issn><issn>1096-1216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQQC0EEqXwC1gsMSecne-BoVRAkYoYgBXLvVyoo3xhO5X670kpM5OX9-7Oj7FrAaEAkd7W4b51bggliDyEIgQRnbCZgCINhBTpKZtBnudBJDM4ZxfO1QBQxJDO2OeC3-s9OaM73vVdMGirW_LWIMdmdJ6s6b64Hgbba9zyqrfcUWsCNw5kd8ZRyd-8HdGPVjd8RbrxW_7Sd8b3B_OSnVW6cXT1987Zx-PD-3IVrF-fnpeLdYCxjH0QiSSjNEJELRFyrDCXIOM825SFlFTGSaUnQIgKohjFJhMJJiVtdBxPaJJGc3ZznDvd-T2S86ruR9tNK5UUSVFEIsuziYqOFNreOUuVGqxptd0rAeoQUtXqN6Q6hFRQqCnkZN0dLZo-sDNklUNDHVJpLKFXZW_-9X8Amn1_Lg</recordid><startdate>20190315</startdate><enddate>20190315</enddate><creator>Rogers, T.J.</creator><creator>Worden, K.</creator><creator>Fuentes, R.</creator><creator>Dervilis, N.</creator><creator>Tygesen, U.T.</creator><creator>Cross, E.J.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190315</creationdate><title>A Bayesian non-parametric clustering approach for semi-supervised Structural Health Monitoring</title><author>Rogers, T.J. ; Worden, K. ; Fuentes, R. ; Dervilis, N. ; Tygesen, U.T. ; Cross, E.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-3157e63ccca2c08cfc8202487bd922ed45fa7e611f034c1b715c5deba44fc8563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Bayesian methods</topic><topic>Classification</topic><topic>Clustering</topic><topic>Damage detection</topic><topic>Dirichlet problem</topic><topic>Feature extraction</topic><topic>Full scale tests</topic><topic>Laboratory tests</topic><topic>Monitoring systems</topic><topic>Nonparametric statistics</topic><topic>Parameter estimation</topic><topic>Semi-supervised learning</topic><topic>Structural engineering</topic><topic>Structural health monitoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rogers, T.J.</creatorcontrib><creatorcontrib>Worden, K.</creatorcontrib><creatorcontrib>Fuentes, R.</creatorcontrib><creatorcontrib>Dervilis, N.</creatorcontrib><creatorcontrib>Tygesen, U.T.</creatorcontrib><creatorcontrib>Cross, E.J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mechanical systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rogers, T.J.</au><au>Worden, K.</au><au>Fuentes, R.</au><au>Dervilis, N.</au><au>Tygesen, U.T.</au><au>Cross, E.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian non-parametric clustering approach for semi-supervised Structural Health Monitoring</atitle><jtitle>Mechanical systems and signal processing</jtitle><date>2019-03-15</date><risdate>2019</risdate><volume>119</volume><spage>100</spage><epage>119</epage><pages>100-119</pages><issn>0888-3270</issn><eissn>1096-1216</eissn><abstract>•A Dirichlet Process model is developed for Bayesian clustering of SHM data.•This online methodology allows decision making without pre-collecting training data.•Random projection successfully allows unsupervised online dimensionality reduction. A key challenge in Structural Health Monitoring (SHM) is the lack of availability of data from a full range of changing operational and damage conditions, with which to train an identification/classification algorithm. This paper presents a framework based on Bayesian non-parametric clustering, in particular Dirichlet Process (DP) mixture models, for performing SHM tasks in a semi-supervised manner, including an online feature extraction method. Previously, methods applied for SHM of structures in operation, such as bridges, have required at least a year’s worth of data before any inferences on performance or structural condition can be made. The method introduced here avoids the need for training data to be collected before inference can begin and increases in robustness as more data are added online. The method is demonstrated on two datasets; one from a laboratory test, the other from a full scale test on civil infrastructure. Results show very good classification accuracy and the ability to incorporate information online (e.g. regarding environmental changes).</abstract><cop>Berlin</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ymssp.2018.09.013</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0888-3270
ispartof Mechanical systems and signal processing, 2019-03, Vol.119, p.100-119
issn 0888-3270
1096-1216
language eng
recordid cdi_proquest_journals_2159931787
source Elsevier ScienceDirect Journals
subjects Algorithms
Bayesian analysis
Bayesian methods
Classification
Clustering
Damage detection
Dirichlet problem
Feature extraction
Full scale tests
Laboratory tests
Monitoring systems
Nonparametric statistics
Parameter estimation
Semi-supervised learning
Structural engineering
Structural health monitoring
title A Bayesian non-parametric clustering approach for semi-supervised Structural Health Monitoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A06%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20non-parametric%20clustering%20approach%20for%20semi-supervised%20Structural%20Health%20Monitoring&rft.jtitle=Mechanical%20systems%20and%20signal%20processing&rft.au=Rogers,%20T.J.&rft.date=2019-03-15&rft.volume=119&rft.spage=100&rft.epage=119&rft.pages=100-119&rft.issn=0888-3270&rft.eissn=1096-1216&rft_id=info:doi/10.1016/j.ymssp.2018.09.013&rft_dat=%3Cproquest_cross%3E2159931787%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2159931787&rft_id=info:pmid/&rft_els_id=S088832701830623X&rfr_iscdi=true