Thermal mechanical analyses of the mm-wave miter bend for the ITER electron cyclotron upper launcher first confinement system
Each of the 4 ITER Electron Cyclotron Heating Upper Launcher (ECHUL) features 8 transmission lines used to inject microwave power of up to 1.31 MW (at the source) per line, into the plasma at 170 GHz. The microwaves are guided from the gyrotrons via (ø50 mm) waveguide transmission lines, into the pl...
Gespeichert in:
Veröffentlicht in: | Fusion engineering and design 2018-11, Vol.136, p.650-654 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 654 |
---|---|
container_issue | |
container_start_page | 650 |
container_title | Fusion engineering and design |
container_volume | 136 |
creator | Santos Silva, Phillip Chavan, René Gagliardi, Mario Goodman, Timothy Landis, Jean-Daniel Ramseyer, Florian Mas Sánchez, Avelino Vagnoni, Matteo |
description | Each of the 4 ITER Electron Cyclotron Heating Upper Launcher (ECHUL) features 8 transmission lines used to inject microwave power of up to 1.31 MW (at the source) per line, into the plasma at 170 GHz. The microwaves are guided from the gyrotrons via (ø50 mm) waveguide transmission lines, into the plasma via the First Confinement System (FCS), consisting of a ‘Z’-shaped set of straight corrugated aluminum waveguides, totaling ∼13 m per line, connected by miter bends (MB). The orientation of the transmission line is achieved by reflecting the microwaves with mirrors. The MBs perform these reflections at angles of ∼90°; they also form part of the primary vacuum boundary and serve as a Tritium barrier, for which SIC-1 safety classification requirements apply.
By reason of ohmic dissipation, mm-wave power is converted into heat, reaching a peak thermal flux of approximately 5.3 MW/m2 at the MB mirror center. Due to this intense peaked power density in the middle of the MB mirror, a dedicated cooling system needs to be designed and tested. In addition to handling the ohmic losses, the MB of the FCS shall be capable of resisting the applied external loads and imposed displacements and also comply with material and space restrictions.
This study describes the evolution of several cooling concepts (evaluated via computational fluid dynamic analysis), leading to the optimization of the final chosen cooling system, which integrates the innovative use of vapor chamber technology. In addition, consideration is given to the final design parameters (material choice and structural dimensioning), concluding with the presentation of the MB assembly concept deemed most suitable for the final FCS design. |
doi_str_mv | 10.1016/j.fusengdes.2018.03.047 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2159931143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0920379618302667</els_id><sourcerecordid>2159931143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-7c5d163f93a455c54f6bc57058763d66bb5f8f0dd95927b179e970f57670e47e3</originalsourceid><addsrcrecordid>eNqFkFtLAzEQhYMoWC-_wYDPuybNJmkeRbwUBEHqc8hmJzZlN6nJrtIH_7vRiq_CwByYcw7Mh9AFJTUlVFxtajdlCK8d5HpO6KImrCaNPEAzupCsklSJQzQjak4qJpU4Ric5bwihsswMfa7WkAbT4wHs2gRvizTB9LsMGUeHxzXgYag-zHvZfoSEWwgddjH9nJar22cMPdgxxYDtzvbxR03bbbH2Zgq29GPnUx6xjcH5AAOEEeddHmE4Q0fO9BnOf_cperm7Xd08VI9P98ub68fKsoaNlbS8o4I5xUzDueWNE63lkvCFFKwTom25WzjSdYqruWypVKAkcVwKSaCRwE7R5b53m-LbBHnUmzil8mbWc8qVYpQ2rLjk3mVTzDmB09vkB5N2mhL9zVpv9B9r_c1aE6YL65K83iehPPHuIelsPQQLnU-Fje6i_7fjC-DyjeY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159931143</pqid></control><display><type>article</type><title>Thermal mechanical analyses of the mm-wave miter bend for the ITER electron cyclotron upper launcher first confinement system</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Santos Silva, Phillip ; Chavan, René ; Gagliardi, Mario ; Goodman, Timothy ; Landis, Jean-Daniel ; Ramseyer, Florian ; Mas Sánchez, Avelino ; Vagnoni, Matteo</creator><creatorcontrib>Santos Silva, Phillip ; Chavan, René ; Gagliardi, Mario ; Goodman, Timothy ; Landis, Jean-Daniel ; Ramseyer, Florian ; Mas Sánchez, Avelino ; Vagnoni, Matteo</creatorcontrib><description>Each of the 4 ITER Electron Cyclotron Heating Upper Launcher (ECHUL) features 8 transmission lines used to inject microwave power of up to 1.31 MW (at the source) per line, into the plasma at 170 GHz. The microwaves are guided from the gyrotrons via (ø50 mm) waveguide transmission lines, into the plasma via the First Confinement System (FCS), consisting of a ‘Z’-shaped set of straight corrugated aluminum waveguides, totaling ∼13 m per line, connected by miter bends (MB). The orientation of the transmission line is achieved by reflecting the microwaves with mirrors. The MBs perform these reflections at angles of ∼90°; they also form part of the primary vacuum boundary and serve as a Tritium barrier, for which SIC-1 safety classification requirements apply.
By reason of ohmic dissipation, mm-wave power is converted into heat, reaching a peak thermal flux of approximately 5.3 MW/m2 at the MB mirror center. Due to this intense peaked power density in the middle of the MB mirror, a dedicated cooling system needs to be designed and tested. In addition to handling the ohmic losses, the MB of the FCS shall be capable of resisting the applied external loads and imposed displacements and also comply with material and space restrictions.
This study describes the evolution of several cooling concepts (evaluated via computational fluid dynamic analysis), leading to the optimization of the final chosen cooling system, which integrates the innovative use of vapor chamber technology. In addition, consideration is given to the final design parameters (material choice and structural dimensioning), concluding with the presentation of the MB assembly concept deemed most suitable for the final FCS design.</description><identifier>ISSN: 0920-3796</identifier><identifier>EISSN: 1873-7196</identifier><identifier>DOI: 10.1016/j.fusengdes.2018.03.047</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Aluminum ; Angle of reflection ; Bends ; Cables ; Confinement ; Cooling ; Cooling systems ; Cyclotron resonance devices ; Cyclotrons ; Design parameters ; Electron cyclotron heating ; Electrons ; Fusion ; Heat conductivity ; Heat transmission ; Mechanical properties ; Microwaves ; Millimeter waves ; Miter bend ; Ohmic dissipation ; Thermal analysis ; Transmission lines ; Tritium ; Upper launcher ; Vapor chamber ; Wave power ; Waveguides</subject><ispartof>Fusion engineering and design, 2018-11, Vol.136, p.650-654</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Nov 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-7c5d163f93a455c54f6bc57058763d66bb5f8f0dd95927b179e970f57670e47e3</citedby><cites>FETCH-LOGICAL-c343t-7c5d163f93a455c54f6bc57058763d66bb5f8f0dd95927b179e970f57670e47e3</cites><orcidid>0000-0001-8291-6968 ; 0000-0001-7880-7224</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0920379618302667$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Santos Silva, Phillip</creatorcontrib><creatorcontrib>Chavan, René</creatorcontrib><creatorcontrib>Gagliardi, Mario</creatorcontrib><creatorcontrib>Goodman, Timothy</creatorcontrib><creatorcontrib>Landis, Jean-Daniel</creatorcontrib><creatorcontrib>Ramseyer, Florian</creatorcontrib><creatorcontrib>Mas Sánchez, Avelino</creatorcontrib><creatorcontrib>Vagnoni, Matteo</creatorcontrib><title>Thermal mechanical analyses of the mm-wave miter bend for the ITER electron cyclotron upper launcher first confinement system</title><title>Fusion engineering and design</title><description>Each of the 4 ITER Electron Cyclotron Heating Upper Launcher (ECHUL) features 8 transmission lines used to inject microwave power of up to 1.31 MW (at the source) per line, into the plasma at 170 GHz. The microwaves are guided from the gyrotrons via (ø50 mm) waveguide transmission lines, into the plasma via the First Confinement System (FCS), consisting of a ‘Z’-shaped set of straight corrugated aluminum waveguides, totaling ∼13 m per line, connected by miter bends (MB). The orientation of the transmission line is achieved by reflecting the microwaves with mirrors. The MBs perform these reflections at angles of ∼90°; they also form part of the primary vacuum boundary and serve as a Tritium barrier, for which SIC-1 safety classification requirements apply.
By reason of ohmic dissipation, mm-wave power is converted into heat, reaching a peak thermal flux of approximately 5.3 MW/m2 at the MB mirror center. Due to this intense peaked power density in the middle of the MB mirror, a dedicated cooling system needs to be designed and tested. In addition to handling the ohmic losses, the MB of the FCS shall be capable of resisting the applied external loads and imposed displacements and also comply with material and space restrictions.
This study describes the evolution of several cooling concepts (evaluated via computational fluid dynamic analysis), leading to the optimization of the final chosen cooling system, which integrates the innovative use of vapor chamber technology. In addition, consideration is given to the final design parameters (material choice and structural dimensioning), concluding with the presentation of the MB assembly concept deemed most suitable for the final FCS design.</description><subject>Aluminum</subject><subject>Angle of reflection</subject><subject>Bends</subject><subject>Cables</subject><subject>Confinement</subject><subject>Cooling</subject><subject>Cooling systems</subject><subject>Cyclotron resonance devices</subject><subject>Cyclotrons</subject><subject>Design parameters</subject><subject>Electron cyclotron heating</subject><subject>Electrons</subject><subject>Fusion</subject><subject>Heat conductivity</subject><subject>Heat transmission</subject><subject>Mechanical properties</subject><subject>Microwaves</subject><subject>Millimeter waves</subject><subject>Miter bend</subject><subject>Ohmic dissipation</subject><subject>Thermal analysis</subject><subject>Transmission lines</subject><subject>Tritium</subject><subject>Upper launcher</subject><subject>Vapor chamber</subject><subject>Wave power</subject><subject>Waveguides</subject><issn>0920-3796</issn><issn>1873-7196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkFtLAzEQhYMoWC-_wYDPuybNJmkeRbwUBEHqc8hmJzZlN6nJrtIH_7vRiq_CwByYcw7Mh9AFJTUlVFxtajdlCK8d5HpO6KImrCaNPEAzupCsklSJQzQjak4qJpU4Ric5bwihsswMfa7WkAbT4wHs2gRvizTB9LsMGUeHxzXgYag-zHvZfoSEWwgddjH9nJar22cMPdgxxYDtzvbxR03bbbH2Zgq29GPnUx6xjcH5AAOEEeddHmE4Q0fO9BnOf_cperm7Xd08VI9P98ub68fKsoaNlbS8o4I5xUzDueWNE63lkvCFFKwTom25WzjSdYqruWypVKAkcVwKSaCRwE7R5b53m-LbBHnUmzil8mbWc8qVYpQ2rLjk3mVTzDmB09vkB5N2mhL9zVpv9B9r_c1aE6YL65K83iehPPHuIelsPQQLnU-Fje6i_7fjC-DyjeY</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Santos Silva, Phillip</creator><creator>Chavan, René</creator><creator>Gagliardi, Mario</creator><creator>Goodman, Timothy</creator><creator>Landis, Jean-Daniel</creator><creator>Ramseyer, Florian</creator><creator>Mas Sánchez, Avelino</creator><creator>Vagnoni, Matteo</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8291-6968</orcidid><orcidid>https://orcid.org/0000-0001-7880-7224</orcidid></search><sort><creationdate>201811</creationdate><title>Thermal mechanical analyses of the mm-wave miter bend for the ITER electron cyclotron upper launcher first confinement system</title><author>Santos Silva, Phillip ; Chavan, René ; Gagliardi, Mario ; Goodman, Timothy ; Landis, Jean-Daniel ; Ramseyer, Florian ; Mas Sánchez, Avelino ; Vagnoni, Matteo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-7c5d163f93a455c54f6bc57058763d66bb5f8f0dd95927b179e970f57670e47e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminum</topic><topic>Angle of reflection</topic><topic>Bends</topic><topic>Cables</topic><topic>Confinement</topic><topic>Cooling</topic><topic>Cooling systems</topic><topic>Cyclotron resonance devices</topic><topic>Cyclotrons</topic><topic>Design parameters</topic><topic>Electron cyclotron heating</topic><topic>Electrons</topic><topic>Fusion</topic><topic>Heat conductivity</topic><topic>Heat transmission</topic><topic>Mechanical properties</topic><topic>Microwaves</topic><topic>Millimeter waves</topic><topic>Miter bend</topic><topic>Ohmic dissipation</topic><topic>Thermal analysis</topic><topic>Transmission lines</topic><topic>Tritium</topic><topic>Upper launcher</topic><topic>Vapor chamber</topic><topic>Wave power</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santos Silva, Phillip</creatorcontrib><creatorcontrib>Chavan, René</creatorcontrib><creatorcontrib>Gagliardi, Mario</creatorcontrib><creatorcontrib>Goodman, Timothy</creatorcontrib><creatorcontrib>Landis, Jean-Daniel</creatorcontrib><creatorcontrib>Ramseyer, Florian</creatorcontrib><creatorcontrib>Mas Sánchez, Avelino</creatorcontrib><creatorcontrib>Vagnoni, Matteo</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fusion engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santos Silva, Phillip</au><au>Chavan, René</au><au>Gagliardi, Mario</au><au>Goodman, Timothy</au><au>Landis, Jean-Daniel</au><au>Ramseyer, Florian</au><au>Mas Sánchez, Avelino</au><au>Vagnoni, Matteo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal mechanical analyses of the mm-wave miter bend for the ITER electron cyclotron upper launcher first confinement system</atitle><jtitle>Fusion engineering and design</jtitle><date>2018-11</date><risdate>2018</risdate><volume>136</volume><spage>650</spage><epage>654</epage><pages>650-654</pages><issn>0920-3796</issn><eissn>1873-7196</eissn><abstract>Each of the 4 ITER Electron Cyclotron Heating Upper Launcher (ECHUL) features 8 transmission lines used to inject microwave power of up to 1.31 MW (at the source) per line, into the plasma at 170 GHz. The microwaves are guided from the gyrotrons via (ø50 mm) waveguide transmission lines, into the plasma via the First Confinement System (FCS), consisting of a ‘Z’-shaped set of straight corrugated aluminum waveguides, totaling ∼13 m per line, connected by miter bends (MB). The orientation of the transmission line is achieved by reflecting the microwaves with mirrors. The MBs perform these reflections at angles of ∼90°; they also form part of the primary vacuum boundary and serve as a Tritium barrier, for which SIC-1 safety classification requirements apply.
By reason of ohmic dissipation, mm-wave power is converted into heat, reaching a peak thermal flux of approximately 5.3 MW/m2 at the MB mirror center. Due to this intense peaked power density in the middle of the MB mirror, a dedicated cooling system needs to be designed and tested. In addition to handling the ohmic losses, the MB of the FCS shall be capable of resisting the applied external loads and imposed displacements and also comply with material and space restrictions.
This study describes the evolution of several cooling concepts (evaluated via computational fluid dynamic analysis), leading to the optimization of the final chosen cooling system, which integrates the innovative use of vapor chamber technology. In addition, consideration is given to the final design parameters (material choice and structural dimensioning), concluding with the presentation of the MB assembly concept deemed most suitable for the final FCS design.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.fusengdes.2018.03.047</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-8291-6968</orcidid><orcidid>https://orcid.org/0000-0001-7880-7224</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-3796 |
ispartof | Fusion engineering and design, 2018-11, Vol.136, p.650-654 |
issn | 0920-3796 1873-7196 |
language | eng |
recordid | cdi_proquest_journals_2159931143 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Aluminum Angle of reflection Bends Cables Confinement Cooling Cooling systems Cyclotron resonance devices Cyclotrons Design parameters Electron cyclotron heating Electrons Fusion Heat conductivity Heat transmission Mechanical properties Microwaves Millimeter waves Miter bend Ohmic dissipation Thermal analysis Transmission lines Tritium Upper launcher Vapor chamber Wave power Waveguides |
title | Thermal mechanical analyses of the mm-wave miter bend for the ITER electron cyclotron upper launcher first confinement system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A48%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20mechanical%20analyses%20of%20the%20mm-wave%20miter%20bend%20for%20the%20ITER%20electron%20cyclotron%20upper%20launcher%20first%20confinement%20system&rft.jtitle=Fusion%20engineering%20and%20design&rft.au=Santos%20Silva,%20Phillip&rft.date=2018-11&rft.volume=136&rft.spage=650&rft.epage=654&rft.pages=650-654&rft.issn=0920-3796&rft.eissn=1873-7196&rft_id=info:doi/10.1016/j.fusengdes.2018.03.047&rft_dat=%3Cproquest_cross%3E2159931143%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2159931143&rft_id=info:pmid/&rft_els_id=S0920379618302667&rfr_iscdi=true |