On the statistical significance of protein complex
Background: Statistical validation of predicted complexes is a fundamental issue in proteomics and bioinformatics. The target is to measure the statistical significance of each predicted complex in terms of p-values. Surprisingly, this issue has not received much attention in the literature. To our...
Gespeichert in:
Veröffentlicht in: | Quantitative biology 2018-12, Vol.6 (4), p.313-320 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 320 |
---|---|
container_issue | 4 |
container_start_page | 313 |
container_title | Quantitative biology |
container_volume | 6 |
creator | Su, Youfu Zhao, Can Chen, Zheng Tian, Bo He, Zengyou |
description | Background: Statistical validation of predicted complexes is a fundamental issue in proteomics and bioinformatics. The target is to measure the statistical significance of each predicted complex in terms of p-values. Surprisingly, this issue has not received much attention in the literature. To our knowledge, only a few research efforts have been made towards this direction.
Methods: In this article, we propose a novel method for calculating the p-value of a predicted complex. The null hypothesis is that there is no difference between the number of edges in target protein complex and that in the random null model. In addition, we assume that a true protein complex must be a connected subgraph. Based on this null hypothesis, we present an algorithm to compute the p-value of a given predicted complex.
Results: We test our method on five benchmark data sets to evaluate its effectiveness.
Conclusions: The experimental results show that our method is superior to the state-of-the-art algorithms on assessing the statistical significance of candidate protein complexes. |
doi_str_mv | 10.1007/s40484-018-0153-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_journals_2159743893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2159743893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4592-c6d9dd316dcc900d06d7b4ef85d463a468bef2a01f653dfd2e55b6c872c9ea8e3</originalsourceid><addsrcrecordid>eNqFkEFLAzEQhYMoWGp_gLcFz6tJNskm3myxKhSKYM9hN5m0ke1uTbZo_70pK3qrh2Hm8L55j4fQNcG3BOPyLjLMJMsxkWl4kYszNKJY8ZwJVZ7_3lJdokmMvsaMYckoxSNEl23WbyCLfdX72HtTNVn069a7dLYGss5lu9D14NvMdNtdA19X6MJVTYTJzx6j1fzxbfacL5ZPL7OHRW4YVzQ3wiprCyKsMQpji4UtawZOcstEUaU4NThaYeIEL6yzFDivhZElNQoqCcUY3Qx_k__HHmKv37t9aJOlpoSrkhVSFUlFBpUJXYwBnN4Fv63CQROsj-3ooR2d2tHHdrRIzP3AfPoGDv8D-nU1pdM5xoTRBNMBjolr1xD-Yp1ylAO08esNBLC7ADFqF7q29xBOod8Gnooj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159743893</pqid></control><display><type>article</type><title>On the statistical significance of protein complex</title><source>Wiley Online Library Open Access</source><creator>Su, Youfu ; Zhao, Can ; Chen, Zheng ; Tian, Bo ; He, Zengyou</creator><creatorcontrib>Su, Youfu ; Zhao, Can ; Chen, Zheng ; Tian, Bo ; He, Zengyou</creatorcontrib><description>Background: Statistical validation of predicted complexes is a fundamental issue in proteomics and bioinformatics. The target is to measure the statistical significance of each predicted complex in terms of p-values. Surprisingly, this issue has not received much attention in the literature. To our knowledge, only a few research efforts have been made towards this direction.
Methods: In this article, we propose a novel method for calculating the p-value of a predicted complex. The null hypothesis is that there is no difference between the number of edges in target protein complex and that in the random null model. In addition, we assume that a true protein complex must be a connected subgraph. Based on this null hypothesis, we present an algorithm to compute the p-value of a given predicted complex.
Results: We test our method on five benchmark data sets to evaluate its effectiveness.
Conclusions: The experimental results show that our method is superior to the state-of-the-art algorithms on assessing the statistical significance of candidate protein complexes.</description><identifier>ISSN: 2095-4689</identifier><identifier>EISSN: 2095-4697</identifier><identifier>DOI: 10.1007/s40484-018-0153-6</identifier><language>eng</language><publisher>Beijing: Higher Education Press</publisher><subject>Bioinformatics ; Biomedical and Life Sciences ; community detection ; Computational Biology/Bioinformatics ; Computer Appl. in Life Sciences ; Life Sciences ; Mathematical and Computational Biology ; predicted complex ; Proteins ; Proteomics ; Research Article ; Statistical significance ; statistical significance testing ; Statistics ; subgraph mining</subject><ispartof>Quantitative biology, 2018-12, Vol.6 (4), p.313-320</ispartof><rights>Copyright reserved, 2018, Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature</rights><rights>Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>The Author(s) 2018.</rights><rights>Copyright Springer Nature B.V. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4592-c6d9dd316dcc900d06d7b4ef85d463a468bef2a01f653dfd2e55b6c872c9ea8e3</citedby><cites>FETCH-LOGICAL-c4592-c6d9dd316dcc900d06d7b4ef85d463a468bef2a01f653dfd2e55b6c872c9ea8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40484-018-0153-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40484-018-0153-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,11541,27901,27902,41464,42533,46027,46451,51294</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1007%2Fs40484-018-0153-6$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Su, Youfu</creatorcontrib><creatorcontrib>Zhao, Can</creatorcontrib><creatorcontrib>Chen, Zheng</creatorcontrib><creatorcontrib>Tian, Bo</creatorcontrib><creatorcontrib>He, Zengyou</creatorcontrib><title>On the statistical significance of protein complex</title><title>Quantitative biology</title><addtitle>Quant. Biol</addtitle><addtitle>Quant Biol</addtitle><description>Background: Statistical validation of predicted complexes is a fundamental issue in proteomics and bioinformatics. The target is to measure the statistical significance of each predicted complex in terms of p-values. Surprisingly, this issue has not received much attention in the literature. To our knowledge, only a few research efforts have been made towards this direction.
Methods: In this article, we propose a novel method for calculating the p-value of a predicted complex. The null hypothesis is that there is no difference between the number of edges in target protein complex and that in the random null model. In addition, we assume that a true protein complex must be a connected subgraph. Based on this null hypothesis, we present an algorithm to compute the p-value of a given predicted complex.
Results: We test our method on five benchmark data sets to evaluate its effectiveness.
Conclusions: The experimental results show that our method is superior to the state-of-the-art algorithms on assessing the statistical significance of candidate protein complexes.</description><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>community detection</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computer Appl. in Life Sciences</subject><subject>Life Sciences</subject><subject>Mathematical and Computational Biology</subject><subject>predicted complex</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Research Article</subject><subject>Statistical significance</subject><subject>statistical significance testing</subject><subject>Statistics</subject><subject>subgraph mining</subject><issn>2095-4689</issn><issn>2095-4697</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLAzEQhYMoWGp_gLcFz6tJNskm3myxKhSKYM9hN5m0ke1uTbZo_70pK3qrh2Hm8L55j4fQNcG3BOPyLjLMJMsxkWl4kYszNKJY8ZwJVZ7_3lJdokmMvsaMYckoxSNEl23WbyCLfdX72HtTNVn069a7dLYGss5lu9D14NvMdNtdA19X6MJVTYTJzx6j1fzxbfacL5ZPL7OHRW4YVzQ3wiprCyKsMQpji4UtawZOcstEUaU4NThaYeIEL6yzFDivhZElNQoqCcUY3Qx_k__HHmKv37t9aJOlpoSrkhVSFUlFBpUJXYwBnN4Fv63CQROsj-3ooR2d2tHHdrRIzP3AfPoGDv8D-nU1pdM5xoTRBNMBjolr1xD-Yp1ylAO08esNBLC7ADFqF7q29xBOod8Gnooj</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Su, Youfu</creator><creator>Zhao, Can</creator><creator>Chen, Zheng</creator><creator>Tian, Bo</creator><creator>He, Zengyou</creator><general>Higher Education Press</general><general>Higher Education Press and Springer‐Verlag GmbH Germany, part of Springer Nature</general><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201812</creationdate><title>On the statistical significance of protein complex</title><author>Su, Youfu ; Zhao, Can ; Chen, Zheng ; Tian, Bo ; He, Zengyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4592-c6d9dd316dcc900d06d7b4ef85d463a468bef2a01f653dfd2e55b6c872c9ea8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>community detection</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computer Appl. in Life Sciences</topic><topic>Life Sciences</topic><topic>Mathematical and Computational Biology</topic><topic>predicted complex</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Research Article</topic><topic>Statistical significance</topic><topic>statistical significance testing</topic><topic>Statistics</topic><topic>subgraph mining</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Youfu</creatorcontrib><creatorcontrib>Zhao, Can</creatorcontrib><creatorcontrib>Chen, Zheng</creatorcontrib><creatorcontrib>Tian, Bo</creatorcontrib><creatorcontrib>He, Zengyou</creatorcontrib><collection>CrossRef</collection><jtitle>Quantitative biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Su, Youfu</au><au>Zhao, Can</au><au>Chen, Zheng</au><au>Tian, Bo</au><au>He, Zengyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the statistical significance of protein complex</atitle><jtitle>Quantitative biology</jtitle><stitle>Quant. Biol</stitle><stitle>Quant Biol</stitle><date>2018-12</date><risdate>2018</risdate><volume>6</volume><issue>4</issue><spage>313</spage><epage>320</epage><pages>313-320</pages><issn>2095-4689</issn><eissn>2095-4697</eissn><abstract>Background: Statistical validation of predicted complexes is a fundamental issue in proteomics and bioinformatics. The target is to measure the statistical significance of each predicted complex in terms of p-values. Surprisingly, this issue has not received much attention in the literature. To our knowledge, only a few research efforts have been made towards this direction.
Methods: In this article, we propose a novel method for calculating the p-value of a predicted complex. The null hypothesis is that there is no difference between the number of edges in target protein complex and that in the random null model. In addition, we assume that a true protein complex must be a connected subgraph. Based on this null hypothesis, we present an algorithm to compute the p-value of a given predicted complex.
Results: We test our method on five benchmark data sets to evaluate its effectiveness.
Conclusions: The experimental results show that our method is superior to the state-of-the-art algorithms on assessing the statistical significance of candidate protein complexes.</abstract><cop>Beijing</cop><pub>Higher Education Press</pub><doi>10.1007/s40484-018-0153-6</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2095-4689 |
ispartof | Quantitative biology, 2018-12, Vol.6 (4), p.313-320 |
issn | 2095-4689 2095-4697 |
language | eng |
recordid | cdi_proquest_journals_2159743893 |
source | Wiley Online Library Open Access |
subjects | Bioinformatics Biomedical and Life Sciences community detection Computational Biology/Bioinformatics Computer Appl. in Life Sciences Life Sciences Mathematical and Computational Biology predicted complex Proteins Proteomics Research Article Statistical significance statistical significance testing Statistics subgraph mining |
title | On the statistical significance of protein complex |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A36%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20statistical%20significance%20of%20protein%20complex&rft.jtitle=Quantitative%20biology&rft.au=Su,%20Youfu&rft.date=2018-12&rft.volume=6&rft.issue=4&rft.spage=313&rft.epage=320&rft.pages=313-320&rft.issn=2095-4689&rft.eissn=2095-4697&rft_id=info:doi/10.1007/s40484-018-0153-6&rft_dat=%3Cproquest_24P%3E2159743893%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2159743893&rft_id=info:pmid/&rfr_iscdi=true |