Chitin‐halloysite nanoclay hydrogel composite adsorbent to aqueous heavy metal ions

ABSTRACT Halloysite nanoclay (HNC) was mixed with Chitin hydrogel film by phase inversion in water vapor atmosphere at room temperature. In the preparation, Chitin was dissolved in N,N‐dimethyl acetamine/lithium chloride (DMAc/LiCl) and different amounts of HCN was dispersed well for the gelation pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2019-03, Vol.136 (11), p.n/a
Hauptverfasser: Nguyen, Khoa Dang, Trang, Truong Thi Cam, Kobayashi, Takaomi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page
container_title Journal of applied polymer science
container_volume 136
creator Nguyen, Khoa Dang
Trang, Truong Thi Cam
Kobayashi, Takaomi
description ABSTRACT Halloysite nanoclay (HNC) was mixed with Chitin hydrogel film by phase inversion in water vapor atmosphere at room temperature. In the preparation, Chitin was dissolved in N,N‐dimethyl acetamine/lithium chloride (DMAc/LiCl) and different amounts of HCN was dispersed well for the gelation process. The resultant Chitin‐Halloysite nanoclay (CTH) hydrogel films containing HCN at 0, 0.1, 0.5, 1, and 4 wt % were used for the adsorbents of heavy metal ions. As the results, the tensile strength of the hydrogel composite was enhanced from 0.34 to 0.71 N/mm2 while the elongation decreased from 66.43% to 49.93% with the increment of HNC concentration from 0 to 4 wt %. A reduction in the water content and the increment in the modulus confirmed the formation of highly dispersed nano‐composites with improved interfacial interactions between nano‐fillers and matrix. In the adsorption experiments of the ternary ion of Pb2+, Cu2+, and Cd2+, the removal capacity of Pb(II) was highly retained by the CTH hydrogel film relative to Cd(II) and Cu(II), shown Langmuir model with the maximum binding amount on the hydrogel composites were followed as order Pb (8.2 mg/g), Cu (4.2 mg/g), and Cd (2.1 mg/g). © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47207.
doi_str_mv 10.1002/app.47207
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2159661399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2159661399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3347-bdf55305d96b94f37216899510d41b695f0d0890506fd9a7d1a835f73476f55f3</originalsourceid><addsrcrecordid>eNp1kLFOwzAYhC0EEqUw8AaWmBjS2nFsx2NVQUGqRAc6W05sk1RpHOwUlI1H4Bl5EtyGlekf7rv7TwfALUYzjFA6V103y3iK-BmYYCR4krE0PweTqOEkF4JegqsQdghhTBGbgO2yqvu6_fn6rlTTuCHUvYGtal3ZqAFWg_buzTSwdPvOnTSlg_OFaXvYO6jeD8YdAqyM-hjg3vSqgbVrwzW4sKoJ5ubvTsH28eF1-ZSsX1bPy8U6KQnJeFJoSylBVAtWiMwSnmJ27IiRznDBBLVIo1yg2NRqobjGKifU8uhl0WnJFNyNuZ13sUro5c4dfBtfyhRTwRgmQkTqfqRK70LwxsrO13vlB4mRPK4m42rytFpk5yP7WTdm-B-Ui81mdPwCeppvNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159661399</pqid></control><display><type>article</type><title>Chitin‐halloysite nanoclay hydrogel composite adsorbent to aqueous heavy metal ions</title><source>Access via Wiley Online Library</source><creator>Nguyen, Khoa Dang ; Trang, Truong Thi Cam ; Kobayashi, Takaomi</creator><creatorcontrib>Nguyen, Khoa Dang ; Trang, Truong Thi Cam ; Kobayashi, Takaomi</creatorcontrib><description>ABSTRACT Halloysite nanoclay (HNC) was mixed with Chitin hydrogel film by phase inversion in water vapor atmosphere at room temperature. In the preparation, Chitin was dissolved in N,N‐dimethyl acetamine/lithium chloride (DMAc/LiCl) and different amounts of HCN was dispersed well for the gelation process. The resultant Chitin‐Halloysite nanoclay (CTH) hydrogel films containing HCN at 0, 0.1, 0.5, 1, and 4 wt % were used for the adsorbents of heavy metal ions. As the results, the tensile strength of the hydrogel composite was enhanced from 0.34 to 0.71 N/mm2 while the elongation decreased from 66.43% to 49.93% with the increment of HNC concentration from 0 to 4 wt %. A reduction in the water content and the increment in the modulus confirmed the formation of highly dispersed nano‐composites with improved interfacial interactions between nano‐fillers and matrix. In the adsorption experiments of the ternary ion of Pb2+, Cu2+, and Cd2+, the removal capacity of Pb(II) was highly retained by the CTH hydrogel film relative to Cd(II) and Cu(II), shown Langmuir model with the maximum binding amount on the hydrogel composites were followed as order Pb (8.2 mg/g), Cu (4.2 mg/g), and Cd (2.1 mg/g). © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47207.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.47207</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Adsorbents ; adsorption ; biopolymer ; Cadmium ; Chitin ; clay ; composite ; Composite materials ; Copper ; Dispersion ; Elongation ; Fillers ; Gelation ; Heavy metals ; Hydrogels ; Lead ; Lithium chloride ; Materials science ; Metal ions ; Moisture content ; Polymers ; Water vapor</subject><ispartof>Journal of applied polymer science, 2019-03, Vol.136 (11), p.n/a</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3347-bdf55305d96b94f37216899510d41b695f0d0890506fd9a7d1a835f73476f55f3</citedby><cites>FETCH-LOGICAL-c3347-bdf55305d96b94f37216899510d41b695f0d0890506fd9a7d1a835f73476f55f3</cites><orcidid>0000-0001-7649-4607</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.47207$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.47207$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Nguyen, Khoa Dang</creatorcontrib><creatorcontrib>Trang, Truong Thi Cam</creatorcontrib><creatorcontrib>Kobayashi, Takaomi</creatorcontrib><title>Chitin‐halloysite nanoclay hydrogel composite adsorbent to aqueous heavy metal ions</title><title>Journal of applied polymer science</title><description>ABSTRACT Halloysite nanoclay (HNC) was mixed with Chitin hydrogel film by phase inversion in water vapor atmosphere at room temperature. In the preparation, Chitin was dissolved in N,N‐dimethyl acetamine/lithium chloride (DMAc/LiCl) and different amounts of HCN was dispersed well for the gelation process. The resultant Chitin‐Halloysite nanoclay (CTH) hydrogel films containing HCN at 0, 0.1, 0.5, 1, and 4 wt % were used for the adsorbents of heavy metal ions. As the results, the tensile strength of the hydrogel composite was enhanced from 0.34 to 0.71 N/mm2 while the elongation decreased from 66.43% to 49.93% with the increment of HNC concentration from 0 to 4 wt %. A reduction in the water content and the increment in the modulus confirmed the formation of highly dispersed nano‐composites with improved interfacial interactions between nano‐fillers and matrix. In the adsorption experiments of the ternary ion of Pb2+, Cu2+, and Cd2+, the removal capacity of Pb(II) was highly retained by the CTH hydrogel film relative to Cd(II) and Cu(II), shown Langmuir model with the maximum binding amount on the hydrogel composites were followed as order Pb (8.2 mg/g), Cu (4.2 mg/g), and Cd (2.1 mg/g). © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47207.</description><subject>Adsorbents</subject><subject>adsorption</subject><subject>biopolymer</subject><subject>Cadmium</subject><subject>Chitin</subject><subject>clay</subject><subject>composite</subject><subject>Composite materials</subject><subject>Copper</subject><subject>Dispersion</subject><subject>Elongation</subject><subject>Fillers</subject><subject>Gelation</subject><subject>Heavy metals</subject><subject>Hydrogels</subject><subject>Lead</subject><subject>Lithium chloride</subject><subject>Materials science</subject><subject>Metal ions</subject><subject>Moisture content</subject><subject>Polymers</subject><subject>Water vapor</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAYhC0EEqUw8AaWmBjS2nFsx2NVQUGqRAc6W05sk1RpHOwUlI1H4Bl5EtyGlekf7rv7TwfALUYzjFA6V103y3iK-BmYYCR4krE0PweTqOEkF4JegqsQdghhTBGbgO2yqvu6_fn6rlTTuCHUvYGtal3ZqAFWg_buzTSwdPvOnTSlg_OFaXvYO6jeD8YdAqyM-hjg3vSqgbVrwzW4sKoJ5ubvTsH28eF1-ZSsX1bPy8U6KQnJeFJoSylBVAtWiMwSnmJ27IiRznDBBLVIo1yg2NRqobjGKifU8uhl0WnJFNyNuZ13sUro5c4dfBtfyhRTwRgmQkTqfqRK70LwxsrO13vlB4mRPK4m42rytFpk5yP7WTdm-B-Ui81mdPwCeppvNQ</recordid><startdate>20190315</startdate><enddate>20190315</enddate><creator>Nguyen, Khoa Dang</creator><creator>Trang, Truong Thi Cam</creator><creator>Kobayashi, Takaomi</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-7649-4607</orcidid></search><sort><creationdate>20190315</creationdate><title>Chitin‐halloysite nanoclay hydrogel composite adsorbent to aqueous heavy metal ions</title><author>Nguyen, Khoa Dang ; Trang, Truong Thi Cam ; Kobayashi, Takaomi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3347-bdf55305d96b94f37216899510d41b695f0d0890506fd9a7d1a835f73476f55f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adsorbents</topic><topic>adsorption</topic><topic>biopolymer</topic><topic>Cadmium</topic><topic>Chitin</topic><topic>clay</topic><topic>composite</topic><topic>Composite materials</topic><topic>Copper</topic><topic>Dispersion</topic><topic>Elongation</topic><topic>Fillers</topic><topic>Gelation</topic><topic>Heavy metals</topic><topic>Hydrogels</topic><topic>Lead</topic><topic>Lithium chloride</topic><topic>Materials science</topic><topic>Metal ions</topic><topic>Moisture content</topic><topic>Polymers</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Khoa Dang</creatorcontrib><creatorcontrib>Trang, Truong Thi Cam</creatorcontrib><creatorcontrib>Kobayashi, Takaomi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Khoa Dang</au><au>Trang, Truong Thi Cam</au><au>Kobayashi, Takaomi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chitin‐halloysite nanoclay hydrogel composite adsorbent to aqueous heavy metal ions</atitle><jtitle>Journal of applied polymer science</jtitle><date>2019-03-15</date><risdate>2019</risdate><volume>136</volume><issue>11</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>ABSTRACT Halloysite nanoclay (HNC) was mixed with Chitin hydrogel film by phase inversion in water vapor atmosphere at room temperature. In the preparation, Chitin was dissolved in N,N‐dimethyl acetamine/lithium chloride (DMAc/LiCl) and different amounts of HCN was dispersed well for the gelation process. The resultant Chitin‐Halloysite nanoclay (CTH) hydrogel films containing HCN at 0, 0.1, 0.5, 1, and 4 wt % were used for the adsorbents of heavy metal ions. As the results, the tensile strength of the hydrogel composite was enhanced from 0.34 to 0.71 N/mm2 while the elongation decreased from 66.43% to 49.93% with the increment of HNC concentration from 0 to 4 wt %. A reduction in the water content and the increment in the modulus confirmed the formation of highly dispersed nano‐composites with improved interfacial interactions between nano‐fillers and matrix. In the adsorption experiments of the ternary ion of Pb2+, Cu2+, and Cd2+, the removal capacity of Pb(II) was highly retained by the CTH hydrogel film relative to Cd(II) and Cu(II), shown Langmuir model with the maximum binding amount on the hydrogel composites were followed as order Pb (8.2 mg/g), Cu (4.2 mg/g), and Cd (2.1 mg/g). © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47207.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/app.47207</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7649-4607</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2019-03, Vol.136 (11), p.n/a
issn 0021-8995
1097-4628
language eng
recordid cdi_proquest_journals_2159661399
source Access via Wiley Online Library
subjects Adsorbents
adsorption
biopolymer
Cadmium
Chitin
clay
composite
Composite materials
Copper
Dispersion
Elongation
Fillers
Gelation
Heavy metals
Hydrogels
Lead
Lithium chloride
Materials science
Metal ions
Moisture content
Polymers
Water vapor
title Chitin‐halloysite nanoclay hydrogel composite adsorbent to aqueous heavy metal ions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A34%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chitin%E2%80%90halloysite%20nanoclay%20hydrogel%20composite%20adsorbent%20to%20aqueous%20heavy%20metal%20ions&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Nguyen,%20Khoa%20Dang&rft.date=2019-03-15&rft.volume=136&rft.issue=11&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.47207&rft_dat=%3Cproquest_cross%3E2159661399%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2159661399&rft_id=info:pmid/&rfr_iscdi=true