Algorithmic Bidding for Virtual Trading in Electricity Markets

We consider the problem of optimal bidding for virtual trading in two-settlement electricity markets. A virtual trader aims to arbitrage on differences between day-ahead and real-time market prices that are random and unknown to market participants. An online learning algorithm is proposed to maximi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2019-01, Vol.34 (1), p.535-543
Hauptverfasser: Baltaoglu, Sevi, Tong, Lang, Zhao, Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 543
container_issue 1
container_start_page 535
container_title IEEE transactions on power systems
container_volume 34
creator Baltaoglu, Sevi
Tong, Lang
Zhao, Qing
description We consider the problem of optimal bidding for virtual trading in two-settlement electricity markets. A virtual trader aims to arbitrage on differences between day-ahead and real-time market prices that are random and unknown to market participants. An online learning algorithm is proposed to maximize the cumulative payoff over a finite number of trading sessions by allocating the trader's budget among his bids for K options in each session. It is shown that the expected payoff of the proposed algorithm converges, with an almost optimal convergence rate, to the expected payoff of the global optimal corresponding to the case when the underlying price distribution is known. The proposed algorithm is also generalized for trading strategies with a risk measure. By using both cumulative payoff and Sharpe ratio as performance metrics, evaluations were performed based on the historical data spanning ten year period of NYISO and PJM markets. It was shown that the proposed strategy outperforms standard benchmarks and the S&P 500 index over the same period.
doi_str_mv 10.1109/TPWRS.2018.2862246
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2159384669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8424030</ieee_id><sourcerecordid>2159384669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-993160c45c3bfa583a634b07d8e5f2024509ad31ee85af6da102ecf98a9f00853</originalsourceid><addsrcrecordid>eNo9kMtKAzEUhoMoWKsvoJsB11NPrk02Qi31AhVFqy5Dmklq6rRTk3TRt3d6wdWB__zfOfAhdImhhzGom8nr19t7jwCWPSIFIUwcoQ7mXJYg-uoYdUBKXkrF4RSdpTQHANEuOuh2UM-aGPL3ItjiLlRVWM4K38TiM8S8NnUxiWaXhWUxqp3NMdiQN8WziT8up3N04k2d3MVhdtHH_WgyfCzHLw9Pw8G4tJSqXCpFsQDLuKVTb7ikRlA2hX4lHfcECOOgTEWxc5IbLyqDgTjrlTTKA0hOu-h6f3cVm9-1S1nPm3Vcti81wVxRyYRQbYvsWzY2KUXn9SqGhYkbjUFvPemdJ731pA-eWuhqDwXn3D8gGWFAgf4BeZRjeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159384669</pqid></control><display><type>article</type><title>Algorithmic Bidding for Virtual Trading in Electricity Markets</title><source>IEEE Electronic Library (IEL)</source><creator>Baltaoglu, Sevi ; Tong, Lang ; Zhao, Qing</creator><creatorcontrib>Baltaoglu, Sevi ; Tong, Lang ; Zhao, Qing</creatorcontrib><description>We consider the problem of optimal bidding for virtual trading in two-settlement electricity markets. A virtual trader aims to arbitrage on differences between day-ahead and real-time market prices that are random and unknown to market participants. An online learning algorithm is proposed to maximize the cumulative payoff over a finite number of trading sessions by allocating the trader's budget among his bids for &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;K&lt;/tex-math&gt;&lt;/inline-formula&gt; options in each session. It is shown that the expected payoff of the proposed algorithm converges, with an almost optimal convergence rate, to the expected payoff of the global optimal corresponding to the case when the underlying price distribution is known. The proposed algorithm is also generalized for trading strategies with a risk measure. By using both cumulative payoff and Sharpe ratio as performance metrics, evaluations were performed based on the historical data spanning ten year period of NYISO and PJM markets. It was shown that the proposed strategy outperforms standard benchmarks and the S&amp;P 500 index over the same period.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2018.2862246</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>algorithmic bidding ; Algorithms ; Benchmark testing ; Convergence ; Distance learning ; Electricity ; Electricity markets ; Electricity supply industry ; Hidden Markov models ; ISO ; Machine learning ; Markets ; online machine learning ; Performance measurement ; Pricing ; Real-time systems ; Stock market indexes ; virtual transactions</subject><ispartof>IEEE transactions on power systems, 2019-01, Vol.34 (1), p.535-543</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-993160c45c3bfa583a634b07d8e5f2024509ad31ee85af6da102ecf98a9f00853</citedby><cites>FETCH-LOGICAL-c339t-993160c45c3bfa583a634b07d8e5f2024509ad31ee85af6da102ecf98a9f00853</cites><orcidid>0000-0001-8769-8699 ; 0000-0002-9590-4285</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8424030$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8424030$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Baltaoglu, Sevi</creatorcontrib><creatorcontrib>Tong, Lang</creatorcontrib><creatorcontrib>Zhao, Qing</creatorcontrib><title>Algorithmic Bidding for Virtual Trading in Electricity Markets</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>We consider the problem of optimal bidding for virtual trading in two-settlement electricity markets. A virtual trader aims to arbitrage on differences between day-ahead and real-time market prices that are random and unknown to market participants. An online learning algorithm is proposed to maximize the cumulative payoff over a finite number of trading sessions by allocating the trader's budget among his bids for &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;K&lt;/tex-math&gt;&lt;/inline-formula&gt; options in each session. It is shown that the expected payoff of the proposed algorithm converges, with an almost optimal convergence rate, to the expected payoff of the global optimal corresponding to the case when the underlying price distribution is known. The proposed algorithm is also generalized for trading strategies with a risk measure. By using both cumulative payoff and Sharpe ratio as performance metrics, evaluations were performed based on the historical data spanning ten year period of NYISO and PJM markets. It was shown that the proposed strategy outperforms standard benchmarks and the S&amp;P 500 index over the same period.</description><subject>algorithmic bidding</subject><subject>Algorithms</subject><subject>Benchmark testing</subject><subject>Convergence</subject><subject>Distance learning</subject><subject>Electricity</subject><subject>Electricity markets</subject><subject>Electricity supply industry</subject><subject>Hidden Markov models</subject><subject>ISO</subject><subject>Machine learning</subject><subject>Markets</subject><subject>online machine learning</subject><subject>Performance measurement</subject><subject>Pricing</subject><subject>Real-time systems</subject><subject>Stock market indexes</subject><subject>virtual transactions</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtKAzEUhoMoWKsvoJsB11NPrk02Qi31AhVFqy5Dmklq6rRTk3TRt3d6wdWB__zfOfAhdImhhzGom8nr19t7jwCWPSIFIUwcoQ7mXJYg-uoYdUBKXkrF4RSdpTQHANEuOuh2UM-aGPL3ItjiLlRVWM4K38TiM8S8NnUxiWaXhWUxqp3NMdiQN8WziT8up3N04k2d3MVhdtHH_WgyfCzHLw9Pw8G4tJSqXCpFsQDLuKVTb7ikRlA2hX4lHfcECOOgTEWxc5IbLyqDgTjrlTTKA0hOu-h6f3cVm9-1S1nPm3Vcti81wVxRyYRQbYvsWzY2KUXn9SqGhYkbjUFvPemdJ731pA-eWuhqDwXn3D8gGWFAgf4BeZRjeQ</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Baltaoglu, Sevi</creator><creator>Tong, Lang</creator><creator>Zhao, Qing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8769-8699</orcidid><orcidid>https://orcid.org/0000-0002-9590-4285</orcidid></search><sort><creationdate>201901</creationdate><title>Algorithmic Bidding for Virtual Trading in Electricity Markets</title><author>Baltaoglu, Sevi ; Tong, Lang ; Zhao, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-993160c45c3bfa583a634b07d8e5f2024509ad31ee85af6da102ecf98a9f00853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>algorithmic bidding</topic><topic>Algorithms</topic><topic>Benchmark testing</topic><topic>Convergence</topic><topic>Distance learning</topic><topic>Electricity</topic><topic>Electricity markets</topic><topic>Electricity supply industry</topic><topic>Hidden Markov models</topic><topic>ISO</topic><topic>Machine learning</topic><topic>Markets</topic><topic>online machine learning</topic><topic>Performance measurement</topic><topic>Pricing</topic><topic>Real-time systems</topic><topic>Stock market indexes</topic><topic>virtual transactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baltaoglu, Sevi</creatorcontrib><creatorcontrib>Tong, Lang</creatorcontrib><creatorcontrib>Zhao, Qing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Baltaoglu, Sevi</au><au>Tong, Lang</au><au>Zhao, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algorithmic Bidding for Virtual Trading in Electricity Markets</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2019-01</date><risdate>2019</risdate><volume>34</volume><issue>1</issue><spage>535</spage><epage>543</epage><pages>535-543</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>We consider the problem of optimal bidding for virtual trading in two-settlement electricity markets. A virtual trader aims to arbitrage on differences between day-ahead and real-time market prices that are random and unknown to market participants. An online learning algorithm is proposed to maximize the cumulative payoff over a finite number of trading sessions by allocating the trader's budget among his bids for &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;K&lt;/tex-math&gt;&lt;/inline-formula&gt; options in each session. It is shown that the expected payoff of the proposed algorithm converges, with an almost optimal convergence rate, to the expected payoff of the global optimal corresponding to the case when the underlying price distribution is known. The proposed algorithm is also generalized for trading strategies with a risk measure. By using both cumulative payoff and Sharpe ratio as performance metrics, evaluations were performed based on the historical data spanning ten year period of NYISO and PJM markets. It was shown that the proposed strategy outperforms standard benchmarks and the S&amp;P 500 index over the same period.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2018.2862246</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8769-8699</orcidid><orcidid>https://orcid.org/0000-0002-9590-4285</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2019-01, Vol.34 (1), p.535-543
issn 0885-8950
1558-0679
language eng
recordid cdi_proquest_journals_2159384669
source IEEE Electronic Library (IEL)
subjects algorithmic bidding
Algorithms
Benchmark testing
Convergence
Distance learning
Electricity
Electricity markets
Electricity supply industry
Hidden Markov models
ISO
Machine learning
Markets
online machine learning
Performance measurement
Pricing
Real-time systems
Stock market indexes
virtual transactions
title Algorithmic Bidding for Virtual Trading in Electricity Markets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T22%3A22%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algorithmic%20Bidding%20for%20Virtual%20Trading%20in%20Electricity%20Markets&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Baltaoglu,%20Sevi&rft.date=2019-01&rft.volume=34&rft.issue=1&rft.spage=535&rft.epage=543&rft.pages=535-543&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2018.2862246&rft_dat=%3Cproquest_RIE%3E2159384669%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2159384669&rft_id=info:pmid/&rft_ieee_id=8424030&rfr_iscdi=true